Identification of Cephalosporin-Resistant
Staphylococcus aureus with the Disc
Diffusion Method

HANS O. HALLANDER AND GUNNAR LAURELL
Institute of Medical Microbiology, Department of Clinical Bacteriology, University of Uppsala,
Uppsala, Sweden

Received for publication 7 January 1972

Methicillin-resistant strains of Staphylococcus aureus, in total 84, representing 16
laboratories in 8 different countries were all resistant to 32 µg of cephalothin per ml
with the same typical heteroresistant pattern. With the disc diffusion method, they
were easily detected when cephalaxin discs were used. With cephalothin discs, on the
other hand, 26 to 49% would have been falsely categorized as Group I or II after
24 hr. It is recommended that susceptibility testing of S. aureus to cephalosporins
by using the paper disc method be performed with 30-µg cephalaxin discs on Mueller-
Hinton agar without blood. With an inoculum of 10⁴ bacteria/ml, an incubation
temperature of 30 C, and an incubation time of 24 hr, a zone of less than 10 mm
indicates presumptive heteroresistance. This corresponds to the international rec-
ommendation with a minimal inhibitory concentration of 32 µg/ml as the upper limit
of Group II.

Genetic as well as clinical evidence indicates cross-resistance between penicillase-stable peni-
cillins and cephalosporins in Staphylococcus aureus (3–5, 8, 11–14, 17). This resistance has also
been shown to be heterogeneous (3, 11) in that
the majority of bacteria may be susceptible whereas a smaller proportion is highly resistant.
The minority of organisms resistant to methi-
cillin typically appear as slow-growing micro-
colonies, which are more easily detected after incubation at 30 C or on hypertonic medium
(1, 9, 10).

This highly resistant minority, when selected
out and transferred to medium without antibi-
otics, reverts to the original state within a few
generations and then usually grows at the normal
rate (9).

According to recommendations given by a World Health Organization-sponsored group
(6), S. aureus strains with minimal inhibitory concentrations (MIC) above 2 µg of methicillin
per ml should be presumed heteroresistant with an all-or-none interpretation in the disc diffusion
test. However, susceptibility to cephalosporin is still given in four categories which may be
explained by the fact that the categorization is also
printed for species other than S. aureus. The
purpose of this paper is to define technical modifications of the disc method to make it more suitable
for detection of cephalosporin-resistant strains of
S. aureus.

MATERIALS AND METHODS

Strains. Eighty-four coagulase- and penicillase-positive strains of methicillin-resistant staphylococci
and 49 coagulase-positive and methicillin-susceptible ones, 30 of which also produced penicillinase, were
analyzed with regard to cephalosporin resistance.
Methicillin resistance was determined by growth in
the presence of 12.5 µg/ml after 48 hr at 30 C (1, 15).
Seventy of the methicillin-resistant strains were supplied
from 16 laboratories in 8 different countries. Fourteen of the methicillin-resistant strains repre-

ented six epidemic outbreaks in five Swedish hospitals.
The 49 methicillin-susceptible strains were isolated
from clinical material at the University Hospital of
Uppsala, Sweden. All were susceptible to 2 µg of
methicillin per ml.

Media. The following disc diffusion experiments
were carried out: (i) Mueller-Hinton (MH) agar
(BBL) with 5% defibrinated sheep blood; (ii) Mueller-
Hinton agar (Difco); (iii) Mueller-Hinton agar
(Difco) with 5% defibrinated sheep blood.

Plate dilution experiments were carried out with:
0.3% meat extract (Difco), 1% peptone (Difco),
1.5% agar (Difco) and 0.5% NaCl in 1,000 ml of
distilled water; pH 7.3 to 7.4.

Nutrient broth experiments were carried out in the
same medium as the plate dilution experiments, except
that the agar was omitted.

Antibiotics. The antibiotics used were as follows:
(i) sodium methicillin (Belfacillin, Astra), stored at
−20 C in distilled water, 0.1 g/ml (each sample
thawed and used only once); (ii) sodium cephalothin
(Keflin, Eli Lilly & Co.), stored as methicillin; (iii)
cephaloridine (Kefpor, Eli Lilly & Co.), stored as methicillin; (iv) cephalexin (Cephalexin, Glaxo), stored as methicillin but in samples of 0.01 g/ml.

Susceptibility tests. (i) The plate dilution test was carried out as follows. A wire loop was dipped into 10 colonies from an overnight blood-agar plate and used to inoculate 10 ml of broth. After 18 hr at 37 °C on a shaking machine, 0.1-ml portions of the undiluted cultures or of 10-fold dilutions in nutrient broth were spread onto nutrient agar plates containing serial dilutions of antibiotic. The results were registered after 24 and 48 hr at 30 or 37 °C.

(ii) The paper disc test was performed by the method of Ericsson et al. (6). Inocula of 10⁶, 10⁵, or 10⁴ bacteria/ml prepared from 20 to 25 colonies were flooded over the plate. Viable count was made of the inoculum for each experiment. Bacteria at 10⁶ ml gave dense but confluent growth. The plates were incubated at 37 or 30 °C with cephalothin and cephalexin discs of 15 and 30 μg and methicillin discs of 10 μg each (Biodisk, Sweden). Since these experiments were performed, international and Swedish recommendations about disc content and upper limits of susceptibility have appeared (6). Zone sizes were recorded after 24 hr and were interpreted according to internationally recommended regression curves as reported by Ericsson and Sherris (6) and as shown in Table 1. The regression curve for cephalothin was y = -2.9 x + 52.9 where y is zone size in millimeters and x is log MIC.

Penicillinase was assayed as described by Perret (16).

RESULTS

MIC values and heteroresistance to cephalosporins of methicillin-resistant S. aureus determined with the plate dilution method. When tested for cephalosporin resistance, all 84 methicillin-resistant strains grew in the presence of 32 μg of cephaloridine or cephalexin per ml and all but 7 grew at 32 μg of cephaloridine per ml. These strains, however, grow at 16 μg/ml.

Twenty-five out of the 84, with at least one strain from each represented laboratory, were further studied with regard to heteroresistance to cephalothin, cephalexin, cephalolin, and methicillin. Heteroresistance was expressed as the ratio between the number of colonies growing at various concentrations of antibiotic in the medium and the total number of colonies growing without antibiotic. As this part of the study was performed before the international recommendations, the substances were diluted 12.5:25:50 instead of 16:32:64. A varying degree of heteroresistance was documented for all the strains tested (Table 2). For cephalothin, methicillin, and cephalexin, there was a decreasing proportion of resistant organisms with increasing concentration of antibiotic. The MIC values were at 100 μg/ml or more except for two strains, which did not grow at 100 μg of cephalothin per ml. Cephaloridine turned out to be most effective. As for the median strain, a minority of bacteria grew at 25 μg/ml but not at 50 μg/ml. All strains grew in the presence of 12.5 μg/ml. A final MIC for cephaloridine was, however, difficult to obtain for many of the strains. At 50 μg/ml, for example, there was often an almost confluent growth of microcolonies with the heaviest inoculum, whereas a 1:10 dilution of the inoculum resulted in no growth. To be recorded as "growth" on medium with cephaloridine at a certain concentration of the agent, 100 colonies or less were required on each plate. This inoculum effect may well be due to the formation of penicillinase (2).

Zone sizes and MIC values for cephalosporins given by the paper disc method. Figure 1 presents the inhibition zones of 84 cephalosporin-resistant strains in the disc diffusion test performed as recommended by Ericsson and Sherris (6), with Mueller-Hinton agar (Difco) containing 5% sheep blood, an inoculum of 10⁸ bacteria/ml, and 30-μg discs of cephalothin and cephalexin. The plates were incubated at 30 °C, and they were read

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Disc content (μg/ml)</th>
<th>MIC, upper limit (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group I</td>
<td>Group II</td>
</tr>
<tr>
<td>Methicillin</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>International</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Swedish</td>
<td>(10 mm)b</td>
<td></td>
</tr>
<tr>
<td>Cephalothin</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>International</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Swedish</td>
<td>(24 mm)</td>
<td>(15 mm)</td>
</tr>
<tr>
<td>Cephalaxin</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>International</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>(25 mm)</td>
<td>(15 mm)</td>
</tr>
</tbody>
</table>

a The agent not recommended for use in this group.
b Growth at 30 °C.

Table 1. International and Swedish recommendations of disc content and upper limits of susceptibility

Table 2. Heteroresistance of methicillin-resistant Staphylococcus aureus to methicillin and various cephalosporins; median of 25 strains (for cephalexin, median of 17)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>No. of colonies growing at various concn of antibiotic in the medium (μg/ml)/no. of colonies growing without antibiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>Methicillin . . .</td>
<td>1/10</td>
</tr>
<tr>
<td>Cephaloridine . . .</td>
<td>1/10³</td>
</tr>
<tr>
<td>Cephalothin . . .</td>
<td>1/10</td>
</tr>
<tr>
<td>Cephalaxin . . .</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Downloaded from http://aac.asm.org on October 11, 2017 by guest.
recorded as susceptible with cephalothin discs and 16 μg/ml as upper limit (Fig. 2). Corresponding figures with cephalaxin discs were two (2%). All but six of the strains grew up to the cephalaxin disc, giving no inhibition zone at all. For methicillin, 42 of the 84 strains were recognized as susceptible compared with three at 30 C.

Influence of incubation time. As longer incubation increases the chance for resistant microcolonies to appear, the plates were read again after 48 hr. The number of strains recognized as Group I or II at 30 C was reduced from 22 to 11 with the Swedish and from 41 to 26 with the international recommendations.

Influence of medium. According to recommendations by the World Health Organization group, Mueller-Hinton medium with 5% defibrinated sheep blood was used throughout this study. There was no significant difference of results on Difco Mueller-Hinton and BBL Mueller-Hinton medium. When blood was excluded there was, however, a tendency towards larger zones around the cephalothin discs, 42% of the investigated strains giving zones of 30 mm or more at 30 C and 24 hr. For cephalaxin, on the other hand, the results were not significantly influenced by the exclusion of blood.

Fig. 1. Inhibition zones for 84 methicillin-resistant Staphylococcus aureus strains with cephalothin, cephalaxin, and methicillin discs after incubation at 30 C on Mueller-Hinton (MH) agar with 5% defibrinated sheep blood.

Fig. 2. Same as Fig. 1 but incubation at 37 C.
Influence of disc content. Discs containing 15 μg of cephalothin and cephalexin, respectively, gave results comparable with 30-μg discs. A large number of strains were recorded as susceptible. As no regression curves were given by the manufacturer, the difference could not be analyzed in more detail.

MIC values to cephalosporins of 49 methicillin-resistant Staphylococcus aureus determined with the plate dilution method. The effect of various cephalosporins on methicillin-susceptible strains is shown in Table 3. Cephalothin was most effective with MIC values below 2 μg/ml for the great majority of strains. Only one grew at 2 μg/ml. For cephaloridine, on the other hand, MIC values of 2 μg/ml or more were recorded for 13 strains, all penicillinase producers. This is in contrast to the results with methicillin-resistant strains, which are all penicillinase producers but were more susceptible to cephaloridine. To cephalexin only 30 of the 49 strains were recorded as susceptible or fairly susceptible to cephalexin according to the Swedish recommendations.

Zone sizes for cephalexin given by the paper disc method. As cephalexin evidently offered the greatest chance to detect staphylococcal heteroresistance to cephalosporins, it was of interest to study the cephalexin zones with cephalosporin-susceptible strains as a control. Therefore, the 49 strains were analyzed under the same conditions as given for the results in Fig. 1, with the exception that no blood was added to the medium. As seen in Fig. 3, there was a zone range between 20 and 35 mm. The zones for cephalothin were 30 mm or more for all strains.

DISCUSSION
The results of this report support the suggestion of a close association between methicillin and cephalosporin resistance in Staphylococcus aureus, with heteroresistance as a typical trait. The strains used represent 16 laboratories in 8 different countries. For methicillin, an MIC of 2 μg/ml has been recommended as limit for presuming heteroresistance in Staphylococcus aureus. Susceptibility is recorded as resistant or sensitive (6). Our results indicate that similar recommendations should be given for cephalosporins.

If cephalothin were to be used as prototype agent, the same limit could probably be used. In

Table 3. MIC values of various cephalosporins for 49 strains of methicillin-susceptible Staphylococcus aureus

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC at</th>
<th>< 2 μg/ml</th>
<th>2-8 μg/ml</th>
<th>≥ 16 μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalothin</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>36</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalexin</td>
<td>6</td>
<td>24</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3. Inhibition zones for 49 methicillin-susceptible strains with cephalothin and cephalexin discs after incubation at 30°C on Mueller-Hinton agar without blood.
the plate dilution test, all methicillin-susceptible strains were inhibited by 2 μg/ml or less, whereas all resistant strains grew in the presence of 32 μg/ml. Cephalothin is, however, not ideal, as many resistant cultures will give zones falsely indicating susceptibility in the disc diffusion test. This problem was further exaggerated when blood was excluded from the medium.

With cephalixin, MIC values of 16 μg/ml or more in plate dilution were recorded for many of the methicillin-sensitive S. aureus strains. On the other hand, more clear-cut results were obtained in the paper disc method with zones of 20 mm or more for sensitive and no or small zones for resistant ones. These results were not significantly influenced whether blood was present or not in the medium. As the detection of heteroresistance is probably of primary importance, cephalixin is recommended as prototype cephalosporin.

No discs were commercially available for cephaloridine. However, this drug was the most active on cephalosporin- or methicillin-resistant S. aureus strains which were all penicillinase-positive, but it was less effective than cephalothin on penicillinase-producing methicillin-susceptible strains.

From a practical point of view, incubation time and temperature turned out to be essential, whereas disc content or manufacturer of Mueller-Hinton agar seemed to be of less importance.

Whether the laboratory findings are applicable to in vivo conditions cannot be fully evaluated. It is true that intermittent administration of 3 g of cephalothin every 6 hr may give serum peaks of 200 μg/ml and that some of the resistant strains tested did not grow at 100 μg/ml. In vitro, however, organisms with higher resistance are easily selected in the presence of cephalosporin. Literature is controversial on this point. Although Eriksen (7) found methicillin-resistant strains resistant to cephalixin in vitro, he stated that “cephalixin as well as other cephalosporins can be expected to have a clinical effect on methicillin-resistant staphylococci.” Kayser (11), on the other hand, thinks “it is impossible to decide which in vitro conditions are relevant. Therefore, methicillin-resistant staphylococci should be regarded as resistant to all penicillins and cephalosporins.”

Chabbert (3) reported clinical failure of high-dose treatment with methicillin and cephalothin in heteroresistant strains.

LITERATURE CITED