Previously Undescribed 6.6-Kilobase R Plasmid in Penicillinase-Producing Neisseria gonorrhoeae

ANNE GOUBY,* GISELÈ BOURG, AND MICHEL RAMUZ

Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale Unité 65, 30000 Nimes, France

Received 12 June 1985/Accepted 10 March 1986

A penicillin-resistant Neisseria gonorrhoeae strain was isolated. The resistance was due to the production of TEM-1 β-lactamase encoded by a plasmid. This 6.6-kilobase plasmid was compared with the previously known 7.4- and 5.3-kilobase penicillin R plasmids of N. gonorrhoeae.

Since 1976, numerous penicillin-resistant strains of Neisseria gonorrhoeae have appeared. Their resistance is related to the synthesis of a plasmid-encoded TEM-1 β-lactamase (3, 15, 20). Two kinds of plasmids coding for this enzyme have been described so far: a 5.3-kilobase (kb) plasmid, found in strains isolated from patients who have been in Africa, and a 7.4-kb plasmid from Asia (14, 19, 22). These two plasmids are very similar; both carry the same part of a Tn2 transposon (5, 16), and the only difference between them is a 2.1-kb fragment inserted in the 5.3-kb plasmid to give the 7.4-kb one (1). In 1982, a penicillin-resistant N. gonorrhoeae strain (HN1) was isolated at Nimes Hospital from an inflamed Fallopian tube. The strain owed its resistance to the production of a β-lactamase. We have characterized the enzyme and the genetic determinant encoding its synthesis.

β-Lactamase production was detected with nitrocefin (Glaxo Pharmaceuticals, Ltd.) (13). The enzyme was purified 110-fold on a cyanogen bromide-Sepharose column, using cephalosporin C as ligand (4). The substrate profile of the β-lactamase, determined by the spectrophotometric method of Samuni (17), was similar to that of TEM-1. Like TEM-1, the HN1 enzyme was inhibited by cloxacillin and was not inhibited by 1 mM NaCl. Isoelectric focusing on a polyacrylamide gel (9) gave pI S of 5.48 for TEM-1, 5.7 for TEM-2, and 5.48 for the β-lactamase from strain HN1. The substrate profile of the enzyme, its sensitivity to inhibitors, and its pI indicate therefore that it is a TEM-1 β-lactamase, as are the β-lactamases of other penicillinase-producing Neisseria gonorrhoeae strains previously described (6, 20).

Plasmid DNA was extracted from N. gonorrhoeae HN1 according to the method described by Elwell and Falkow (2). It was studied by agarose gel electrophoresis and compared with plasmid DNA extracted from N. gonorrhoeae strain 1347, containing a 4.2-kb cryptic plasmid and a 5.3-kb R plasmid (kindly provided by J. Y. Riou [7]), and from Escherichia coli OF37 containing the 7.4-kb gonococcus R plasmid pJ102 (given by O. Fayet [5]). N. gonorrhoeae strain HN1 contained two plasmids of 4.2 and 6.6 kb (Fig. 1). Plasmid DNA of strain HN1, purified by cesium chloride ultracentrifugation with ethidium bromide (2), was successfully used to transform E. coli HB101 (8) to ampicillin resistance according to the method of Elwell and Falkow (2). Transformed clones produced β-lactamase and contained a single plasmid termed pGF1. The size of this plasmid, 6.6 kb, was between those of the two previously described gonococcal β-lactamase plasmids (7.4 and 5.3 kb). The homology between plasmid pGFI and the 7.4-kb plasmid pJ102 (5) was studied by the Southern blotting method (18). Whole plasmid pJ102 was used as a probe. Its hybridization with pGFI fragments generated by cleavage with Alul, HindII, and a combination of BamHI plus HindII was studied. Hybridization of the same fragments with a probe consisting of the pGFI plasmid itself was used as a reference. All fragments generated by BamHI plus HindII hybridized strongly with pJ102 (data not shown). Of the fragments cut by HindII, the 0.35-kb one did not hybridize and the 0.62- and 0.385-kb fragments hybridized less strongly than the control (Fig. 2). Hydrolysis of pGFI by restriction endonucleases gave the following results. HindII cut it once, as did PstI and AvaI. BamHI digestion generated two fragments of approximately

* Corresponding author.
3 and 3.6 kb. *Hinfl* cut the plasmid into six fragments (2.9, 1.2, 1.1, 0.62, 0.385, and 0.35 kb). *Alul* generated more than six fragments. Plasmid *pGF1* was not cleaved by *HindIII*. Double digestions were performed to locate the various cleavage sites (Fig. 3). The exact location of the two *Hinfl* sites between 4.7 and 5.8 kb was not determined. The synthesis of the β-lactamase of *N. gonorrhoeae* HN1 is therefore encoded by a plasmid that has extensive homology with the 7.4-kb gonococcal β-lactamase plasmid as demonstrated by the Southern blotting hybridization. Furthermore, the restriction sites corresponding to the Tn2 transposon, which encodes the β-lactamase in the 5.3- and 7.4-kb plasmids, are in the expected locations (one *PstI* site, one *Hinfl* site, two *HincII* sites, and one *BamHI* site) (10–12). However, *pGF1* is different in size (6.6 kb) from the two previously known R plasmids (5.3 and 7.4 kb), and hybridization by the Southern blotting method showed the presence of a *Hinfl* fragment that did not hybridize with the 7.4-kb *pJ102*. Comparison of the sites of *BamHI* cleavage of the 7.4- and 5.3-kb plasmids (5.3-kb plasmid *pNG18* [1] is cleaved in 2.4- and 2.9-kb fragments; 7.4-kb plasmid *pJ102* is cleaved in 2.4- and 3-kb fragments) with those of *pGF1* allows us to locate this insertion approximately: in *pGF1* the *BamHI* fragment encompassing *PstI* and *Hinfl* sites corresponded to the 2.4-kb *BamHI* fragment in the 5.3- and 7.4-kb plasmids and was modified to give a 3.6-kb fragment (Fig. 3).

The simplest explanation of the origin of *pGF1* is therefore that it derives from the 5.3-kb plasmid by insertion of this DNA fragment. As far as we know, the 6.6-kb plasmid we report here has not been previously described (plasmid *pG04717*, recently described, differs from the 7.4-kb plasmid by a 2.9-kb deletion [21]).

Current research is presently in progress in our laboratory to determine the origin of the supplementary sequence.

This work was supported by the Institut National de la Santé et de la Recherche Médicale.

We gratefully acknowledge Gérard Roizes and Michel Pages for their help and suggestions, and we thank O. Fayet, P. Courvalin, and J. Y. Riou for helpful discussions.

LITERATURE CITED

5. Fayet, O., Y. Froment, and J. C. Piffaretti. 1982. β-Lactamase-
specifying plasmids isolated from Neisseria gonorrhoeae have retained an intact right part of a Tn3-like transposon. J. Bacteriol. **149:**136–144.