Energy-Dependent Efflux Mediated by Class L (TetL) Tetracycline Resistance Determinant from Streptococci

LAURA M. McMURRY,1* BRITT H. PARK,1 VICKERS BURDETT,2 AND STUART B. LEVY1,3

Departments of Molecular Biology and Microbiology1 and Medicine,2 Tufts University School of Medicine, Boston, Massachusetts 02111, and Department of Microbiology, Duke University, Durham, North Carolina 277102

Received 7 May 1987/Accepted 24 July 1987

The class L (TetL) tetracycline resistance determinant from streptococci specified resistance and an energy-dependent decreased accumulation of tetracycline in both Streptococcus faecalis and Escherichia coli. Using E. coli, we showed that the reduced uptake resulted from active efflux. The streptococcal class M determinant, known to render the protein synthesis machinery of S. faecalis resistant to tetracycline inhibition, did not alter tetracycline transport in either host.

Tetracycline resistance (Tc') determinants are widespread among gram-negative and gram-positive bacteria, both anaerobes and aerobes (10). The original source of these determinants is unknown, but recent studies have shown that previously identified determinants appear to have moved into new hosts. Of particular note, determinants with strong homology to class M (TetM), initially found among streptococci (3), have now been identified among newly appearing Tc' strains of Mycoplasma (17), Ureaplasma (16), Campylobacter (19), Gardnerella (15), Neisseria (14), and Clostridium (7) spp. The wide dispersal of this determinant can probably be attributed in part to its existence on transposon Tn916 originally described in Streptococcus faecalis (5). Two other streptococcal determinants, class L (TetL) and class N (TetN), have also been discovered (3).

The mechanism of resistance specified by the class M determinant in S. faecalis occurs at the level of the target of tetracycline, namely, the protein synthesis machinery within the cell (2). The class L determinant, on the other hand, does not prevent the inhibition of protein synthesis in S. faecalis but rather decreases tetracycline uptake (2). The purpose of the present study was to determine the mechanism for this decrease in both S. faecalis and Escherichia coli as hosts.

The naturally occurring plasmids pMV158 (class L) and pAM211 (class M) (2) were used in S. faecalis. In E. coli, we used pVB8-A15 (a hybrid of pMV158 with the E. coli cloning vector pVH2124 [3]) and pJ13 (a 5-kilobase Hincll region of the chromosomal class M determinant from Streptococcus agalactiae B109 containing the entire Tc' determinant cloned into the E. coli vector pACYC177 [3, 8]). These plasmids were introduced into E. coli SK1592 (3) by transformation.

The levels of resistance to tetracycline and minocycline expressed aerobically and anaerobically in S. faecalis and E. coli were assayed by the gradient plate method on Peninsula medium (Difco Laboratories) (4). In both genera, the class M determinant specified resistance to both tetracycline and minocycline, while the class L determinant, as previously reported for streptococci (2), expressed only resistance to tetracycline. In S. faecalis, Tc' mediated by class L on pMV158 varied (MIC, 50 to 100 μg/ml) in different experiments and that specified by class M on pAM211 was

* Corresponding author.

FIG. 1. Tetracycline accumulation in tetracycline-susceptible and -resistant streptococci. S. faecalis ATCC 9790r with or without the class L determinant on plasmid pMV158 (3) was grown in KTY (3) medium (with 1 μM tetracycline for the Tc' derivative) to an A590 of 0.4 to 0.8. Cells were washed twice with 50 mM sodium-HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) and suspended in KTY medium without glucose to an A590 of 2.0. The cells were energized by adding glucose (1%) and incubating at 37°C for 15 min. The cells were deenergized by adding CCCP (250 μM). Uptake was initiated by the addition at time zero of [7-3H]tetracycline (500 Ci/mol; New England Nuclear Corp., Boston, Mass.) (1.2 μM). At intervals, 100-μl samples were diluted into 6 ml of cold buffered saline, filtered through 0.45-μm-pore-size Gelman GN-6 Metrical membrane filters, and washed with 3 ml of buffered saline. The filters were dried at 37°C, and radioactivity was determined in Betafluxor (National Diagnostics, Somerville, N.J.). ■, Susceptible cells (CCCP added at arrow); □, susceptible cells (CCCP added prior to tetracycline); ●, resistant cells (CCCP added at arrow); ○, resistant cells (CCCP added prior to tetracycline).
FIG. 2. Tetracycline accumulation in tetracycline-susceptible and -resistant E. coli bearing Tc⁺ determinants from streptococci. E. coli SK1592 with and without plasmid pVB·A15 (class L) or pJ3 (class M) was grown in minimal medium A (12) with 0.5% glycerol, 0.1% Casamino Acids (Difco), and 2 μM tetracycline for resistant cells at 37°C to an A₅₃₀ of 0.8. The cells were assayed for uptake of [3H]tetracycline at 4 μM tetracycline in pH 6.0 buffer with lactate by filtration (Fig. 1; as described in reference 11, except that no chloramphenicol was used). ○, DNP added before tetracycline; ●, DNP (2 mM) added at the arrow.

10 to 30% lower than that for pMV158 in the same experiment. Approximately 10 to 25% as much Tc⁺ was expressed by the determinants in E. coli as compared with levels expressed in S. faecalis (even though S. faecalis was intrinsically severalfold more susceptible than E. coli was to tetracycline). These results could relate to inefficiency of the resistance mechanism in the foreign E. coli host or to decreased gene expression. It should be noted that the cloned determinants are on multicopy plasmids in E. coli, whereas they are in low-copy-number plasmids in streptococci. Under anaerobic growth conditions, cells were resistant to 25 to 70% lower levels of tetracycline.

In previous studies, active uptake of tetracycline was seen in susceptible S. faecalis cells and in those bearing the class M determinant (2). A decreased uptake was noted for cells bearing the class L determinant (2); however, the cause of the reduced uptake was not demonstrated. We studied the effect of destruction of membrane proton motive force by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the tetracycline accumulation of susceptible S. faecalis cells and of those bearing the class L determinant. We found that susceptible cells actively accumulated tetracycline, whereas cells bearing the class L determinant took up less tetracycline than did susceptible cells (Fig. 1) as previously reported (2). However, when class L-containing cells were grown in minimal medium A with 0.2% glucose and 0.5% glycerol, uptake for class L determinants increased as much as 25%.

FIG. 3. Changes in tetracycline accumulation following energization of starved E. coli. E. coli DL-54, an unc_A mutant of ML308-225 (18), and its class L transformant DL-54(pVB·A15) were grown in (minimal) medium A with 0.2% glucose and 2 μg of thiamine hydrochloride per ml (plus 2 μM tetracycline for resistant cells) and starved for energy substrates in medium A without glucose in the presence of 5 mM DNP for 4 h at 37°C at an A₅₃₀ of 3. The cells were washed four times in medium A to remove DNP, and uptake of [3H]tetracycline (added at time zero to 2.5 μM) was measured in this medium (37°C, A₅₃₀ of 2). The steady-state accumulation of tetracycline in starved cells is represented as 100% (---). For an unexplained reason, the absolute uptake in starved susceptible cells was about twice that of starved resistant cells. Glucose (0.2%) was added at the arrow. Samples of 50 μl were diluted into 10 ml of medium A containing 0.1 M lithium chloride at 20°C, filtered (see legend to Fig. 1), and washed with 4 ml of medium A plus lithium chloride. Radioactivity on the filters was determined as described in the legend to Fig. 1.

TABLE 1. Effect of class L or M Tc⁺ determinants on Tc⁺ expressed by class A or B in E. coli

<table>
<thead>
<tr>
<th>Plasmid<sup>a</sup></th>
<th>Tc<sup>+</sup> determinant class</th>
<th>MIC (μg/ml)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pVB·A15</td>
<td>L</td>
<td>23 ± 3</td>
</tr>
<tr>
<td>pJ3</td>
<td>M</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>RK231</td>
<td>A</td>
<td>62 ± 5</td>
</tr>
<tr>
<td>pIP15</td>
<td>A</td>
<td>44 ± 6</td>
</tr>
<tr>
<td>R100-1</td>
<td>B</td>
<td>101 ± 15</td>
</tr>
<tr>
<td>R222</td>
<td>B</td>
<td>100 ± 15</td>
</tr>
<tr>
<td>RK231 + pVB·A15</td>
<td>A + L</td>
<td>57 ± 9</td>
</tr>
<tr>
<td>pIP15 + pJ3</td>
<td>A + M</td>
<td>85 ± 11<sup>c</sup></td>
</tr>
<tr>
<td>R100-1 + pVB·A15</td>
<td>B + L</td>
<td>110 ± 15</td>
</tr>
<tr>
<td>R222 + pVB·A15</td>
<td>B + L</td>
<td>107 ± 14</td>
</tr>
<tr>
<td>R222 + pJ3</td>
<td>B + M</td>
<td>178 ± 7<sup>c</sup></td>
</tr>
</tbody>
</table>

^a All plasmids were in E. coli SK1592. Sources or references for plasmids are: pVB·A15 and pJ3 (3, 8), pIP15 and R222 (13), RK231 (6), and R100-1 (9; M. Malamy).

^b MICs were determined by the gradient plate method (4). Each value is the mean ± standard deviation of three or more determinations.

^c MIC is significantly higher than the sum of the MICs for the two plasmids tested alone.
cells were similarly deenergized with CCCP, they accumulated more tetracycline than when energized (Fig. 1); this finding demonstrated that the reduced tetracycline uptake was energy dependent.

The transport of tetracycline in the absence or presence of class L or class M determinant was similarly examined in Escherichia coli. Again, an active uptake was found in the susceptible cells and in those bearing the class M determinant. Again, cells bearing the class L determinant showed a greatly decreased accumulation of tetracycline, and this reduced uptake was reversed by dinitrophenol (DNP), an inhibitor similar in action to CCCP (Fig. 2).

The class L-mediated lowering of tetracycline accumulation was most likely explained by an active efflux of the drug, by analogy with the mechanisms of TeC (12) specified by classes A to D in Escherichia coli. However, an active prevention of drug entry was an alternative possibility. To clarify the actual mechanism, we depleted class L-containing Escherichia coli cells of endogenous energy reserves by incubation with DNP (1). We then loaded the starved cells with tetracycline and determined whether energization with glucose would cause loss of tetracycline (i.e., efflux). Strain DL-54 (uncA) (18), with and without pVIB · A15, was used as a host, since it was more easily starved than was SK1592. Upon the addition of glucose to starved DL-54 cells preincubated with [3H]tetracycline, the amount of tetracycline increased as expected, consonant with the development of active tetracycline uptake (Fig. 3). In contrast, the amount of tetracycline in resistant cells decreased after glucose energization (Fig. 3). This result indicates that the class L resistance determinant indeed specified an active efflux mechanism. Efflux was also seen if the resistant cells were energized with lactate (data not shown). Since in an uncA mutant (missing the membrane-bound ATPase involved in oxidative phosphorylation) lactate should create a proton motive force across the membrane without formation of ATP (1), the class L-mediated active efflux may depend upon proton motive force, as is true for the class A to D TeC (12) (12).

We examined the effect of the two streptococcal determinants L and M on the expression of two common TeC determinants (class A and class B) in Escherichia coli. Interaction between the class A or class B determinant (encoding active efflux) and the class L determinant produced additive or less than additive TeC (Table 1). On the other hand, interaction between the class A or class B determinant and the class M determinant (encoding a non-efflux mechanism) gave rise to resistance levels greater than the sum (Table 1), consistent with a synergy between two different kinds of resistance mechanisms. We should note, however, that synergy has been seen between different determinants, both from gram-negative cells and both apparently involving active efflux; a greater than additive resistance level occurred when the class F determinant from Bacteroides fragilis was present in the same cell as any of the class A to E determinants (unpublished observations).

These studies demonstrated that the class L streptococcal TeC determinant expressed resistance in a gram-negative Escherichia coli host via a mechanism similar to that used in the original gram-positive parent. The resistance levels for both class L and class M were considerably less in Escherichia coli than in Staphylococcus faecalis. The class L determinant was shown to be responsible for an energy-dependent efflux of the drug.

We thank Denis Desjarlais for help in some of these experiments. This work was supported by grant MV73 from the American Cancer Society and Public Health Service grants AI16756 (to S.B.L.) and AI15619 (to V.B.) from the National Institutes of Health.

LITERATURE CITED