High-Level Tetracycline Resistance Resulting from TetM in Strains of Neisseria spp., Kingella denitrificans, and Eikenella corrodens

JOAN S. KNAPP,1,4 STEVEN R. JOHNSON,1 JONATHAN M. ZENILMAN,2 MARILYN C. ROBERTS,3 AND STEPHEN A. MORSE1

Sexually Transmitted Diseases Laboratory Program, Center for Infectious Diseases,1 and Division of Sexually Transmitted Diseases, Center for Prevention Services,2 Centers for Disease Control, Atlanta, Georgia 30333, and Department of Pathobiology, University of Washington, Seattle, Washington 981953

Received 20 October 1987/Accepted 27 February 1988

Similar to Neisseria gonorrhoeae, tetracycline-resistant isolates of N. meningitidis, Kingella denitrificans, and Eikenella corrodens contained 25.2-megadalton plasmids carrying the TetM determinant. In contrast, tetracycline-resistant N. subflava biovar perflava-N. sicca and N. mucosa isolates carried the TetM determinant in the chromosome.

High-level tetracycline-resistant (Tc'; MIC, ≥16 μg/ml) isolates of Neisseria gonorrhoeae have recently been described (9). Tc' in these isolates was due to the presence of a 25.2-megadalton (MDa) plasmid which appears to have been created by insertion of the streptococcal TetM determinant into the 24.5-MDa conjugative plasmid indigenous to N. gonorrhoeae (9). Between August and December 1985, Tc' N. gonorrhoeae isolates accounted for approximately 5% of all gonococcal isolates in DeKalb County, Georgia (8). During this period, high-level Tc' (MIC, ≥16 μg/ml) oropharyngeal and urethral isolates of N. meningitidis and Kingella denitrificans were identified during routine screening of gram-negative, oxidase-positive organisms isolated on Thayer-Martin medium. As a result, we undertook two studies to determine the prevalence of high-level Tc' in oropharyngeal isolates of Neisseria and related species.

To determine the frequency of high-level Tc' in N. meningitidis and K. denitrificans, gram-negative, oxidase-positive organisms were isolated from oropharyngeal specimens inoculated on Thayer-Martin medium. Tc' isolates were selected by their ability to grow on chocolate agar containing 10 μg of tetracycline per ml and by measurement of the MIC by agar dilution susceptibility testing and confirmed by detection of the TetM determinant as described previously (9). Oropharyngeal specimens were obtained from 146 consecutive patients attending the DeKalb County Sexually Transmitted Diseases Clinic between February and April 1986. Gram-negative, oxidase-positive organisms were identified from acid production from glucose, maltose, fructose, sucrose, and lactose; production of polysaccharide; and nitrate reduction as described previously (6).

Of 146 patients, 23 (16%) were colonized with N. meningitidis, and another 23 (16%) were colonized with K. denitrificans. Of these 46 patients, 8 were colonized by Tc'; gram-negative, oxidase-positive organisms, including 1 (4%) of the 23 N. meningitidis isolates and 7 (30%) of the 23 K. denitrificans isolates.

Because Tc' isolates accounted for 16% of the N. meningitidis and K. denitrificans isolates, we undertook a second study to determine whether commensal Neisseria spp., not usually isolated on Thayer-Martin medium, were also Tc'. In this study, oropharyngeal specimens were obtained from 22 patients attending the same clinic from July to August 1986. Specimens were inoculated onto LBV.SNR medium, which is selective for commensal Neisseria spp. (7), and onto Thayer-Martin medium to detect concurrent colonization with meningococci or K. denitrificans. A colony representative of each morphologic type from each specimen was inoculated onto chocolate medium containing 10 μg of tetracycline per ml to detect Tc' isolates; Tc' was confirmed by measurement of the MIC. For those isolates which grew on tetracycline-containing medium, MICs were ≥16 μg of tetracycline per ml compared with MICs of ≤2.0 μg of tetracycline per ml for isolates which did not grow on tetracycline-containing medium. Isolates were identified as described above. Because biochemical tests could not differentiate between N. subflava biovar perflava and N. sicca, these isolates were identified as N. perflava-N. sicca in this study. Of the 22 patients, 9 (41%) were colonized by at least one Tc' isolate of N. perflava-N. sicca or N. mucosa (Table 1). None of these patients were concurrently colonized by N. meningitidis or K. denitrificans. However, a single Tc' strain of Eikenella corrodens was isolated; the identity of this isolate was confirmed by biochemical tests and by DNA hybridization with a reference strain (unpublished observations).

Cleared lysates were prepared from all Tc' isolates and control strains (14). Isolates of N. meningitidis, K. denitrificans, and E. corrodens contained 25.2-MDa plasmids similar in size to those described in Tc' N. gonorrhoeae isolates, and restriction analyses showed that these plasmids had restriction maps similar to those of previously characterized 25.2-MDa plasmids isolated from N. gonorrhoeae (data not shown) (9). In contrast, no plasmids were observed in the agarose gels of Tc' isolates of N. perflava-N. sicca or N. mucosa. Southern blots were prepared and hybridized with each of two radiolabeled probes prepared by nick translation; these probes were the 5-kilobase HincII fragment from pJ3 which encodes the entire TetM determinant isolated from Streptococcus agalactiae (2, 9-13) and the 1.8-kilobase KpnI-HindIII fragment containing 93% of the TetM structural gene (1). Both probes hybridized with the 25.2-MDa plasmids from the Tc' isolates of N. meningitidis, K. denitrificans, and E. corrodens. However, the probes hybridized with the chromosomal DNA of the Tc' N. perflava-N. sicca and N. mucosa isolates.

To confirm the high degree of plasmid relatedness, we hybridized (14) radiolabeled 25.2-MDa plasmid DNA iso-
TABLE 1. Frequency of isolation of commensal Neisseria spp. harboring the TetM determinant in oropharyngeal specimens of 22 patients attending the DeKalb County Health Department Sexually Transmitted Diseases Clinic from July to August 1986

<table>
<thead>
<tr>
<th>Species isolated</th>
<th>Total no. of patients colonized</th>
<th>No. of patients colonized with the following Tet(^{+}) Neisseria spp.:</th>
<th>N. perflava-N. sicca</th>
<th>N. perflava-N. mucosa</th>
<th>N. sicca</th>
<th>N. mucosa *</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. perflava-N. sicca</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. perflava-N. sicca, N. mucosa</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. perflava-N. sicca, N. mucosa, N. flavicinerea</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. perflava-N. sicca, N. mucosa, N. cinerea</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. perflava-N. sicca, N. cinerea</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. perflava-N. sicca, N. flavicinerea</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*At least one isolate of both N. perflava-N. sicca and N. mucosa was Tet\(^{+}\).

related from N. gonorrhoeae with unlabeled DNA from N. meningitidis, K. denitrificans, and E. corrodens. The plasmids from these strains had a substantial number of DNA sequences in common (60 to 100%) with the reference 25.2-MDa plasmid, suggesting that all of the 25.2-MDa plasmids descended from a common ancestral plasmid.

Previous studies suggested that the 25.2-MDa plasmids from N. gonorrhoeae were also related to the indigenous 24.5-MDa conjugative plasmids (9). To confirm that this was also the case with the 25.2-MDa plasmids from N. meningitidis, K. denitrificans, and E. corrodens, we hybridized radiolabeled 4.5-MDa plasmid DNA from N. gonorrhoeae with unlabeled DNA from N. meningitidis, K. denitrificans, and E. corrodens. Between 60 and 80% of DNA sequences were common to both the 25.4-MDa plasmid and the three 25.2-MDa plasmids. This supports the hypothesis that the 25.2-MDa plasmid was formed by insertion of the TetM determinant into the indigenous 24.5-MDa plasmid. Thus, as expected from the results described above and those presented previously (9), when the 24.5-MDa plasmid was used as a radiolabeled probe against Southern blots of the restricted 25.2-MDa plasmids, most of the restriction fragments hybridized with this probe. However, depending on the restriction enzymes used, the unique sequences which were specific to the TetM determinant could be identified and these fragments did not hybridize with the 24.5-MDa probe. In contrast, no DNA sequence homology was seen when the Tet\(^{+}\) isolates of N. perflava-N. sicca and N. mucosa were hybridized with the 24.5-MDa plasmid either by Southern blot or liquid DNA-DNA hybridization, suggesting that these strains do not carry DNA sequences related to the conjugative plasmid.

Because the data indicate that the 25.2-MDa plasmids from the four different bacterial species are highly related to each other and to the indigenous 24.5-MDa conjugative plasmid, the most logical sequence of events in the distribution of the 25.2-MDa plasmid is that the ancestral plasmid was formed in N. gonorrhoeae by insertion of the TetM determinant into the 24.5-MDa plasmid and subsequently spread to N. meningitidis, K. denitrificans, and E. corrodens. The 24.5-MDa conjugative plasmid has been detected only in N. gonorrhoeae. In previous studies, it could not be transferred or maintained in N. meningitidis and was generally not transferred into other Neisseria spp. (4). In contrast, the 25.2-MDa plasmids from the various species are conjugative and can be transferred into a variety of Neisseria spp. (12). This suggests that the host range of the 25.2-MDa plasmid differs from that of the parental 24.5-MDa plasmid. Whether these changes are due directly to the TetM determinant or indirectly to insertion of the TetM determinant into the indigenous 24.5-MDa gonococcal plasmid is not clear.

The Tet\(^{+}\) isolates of N. perflava-N. sicca and N. mucosa possessed a chromosomal TetM determinant, suggesting that either the 25.2-MDa plasmid is not stable in these species or they have acquired the TetM determinant from some other bacterial species. The host range of the 25.2-MDa plasmids has recently been examined (12), and the data suggest that the 25.2-MDa plasmids can be introduced and maintained in N. subflava-N. sicca and N. mucosa strains under laboratory conditions. This observation supports the hypothesis that the commensal Neisseria isolates may have acquired the TetM determinant from other bacterial species and not from N. gonorrhoeae. Southern hybridization studies of some of the N. perflava-N. sicca strains showed that the TetM determinant was located on different-size restriction fragments, indicating that the strains possessing this determinant are not identical (data not shown).

Although many patients were concurrently colonized by other Neisseria spp., only isolates of N. perflava-N. sicca and N. mucosa were Tet\(^{+}\) and possessed the TetM determinant. We do not know whether chromosomal TetM carriage is specific to these species or results from differences in the colonization of the oropharynx by commensal Neisseria spp. Isolates of N. perflava-N. sicca and N. mucosa may colonize the oropharynx in high numbers compared with other Neisseria spp. (7). Thus, the failure to detect the TetM determinant in other Neisseria spp. may have resulted from the relative paucity of cells of these other species in the oropharynx rather than their inability to harbor the TetM determinant.

The patients who participated in this study stated that they had not had receptive oral sex, further supporting the theory that the Tet\(^{+}\) commensal Neisseria spp. may have acquired the TetM determinant from other bacterial species. Thus, the TetM-containing commensal Neisseria spp. may not be limited to the population of sexually active patients but may be spread nonsexually between persons. The widespread therapeutic use of tetracycline may select for a variety of TetM-containing bacterial species which may be a silent reservoir for the TetM determinant. A review of the interviews with seven of the nine patients colonized by strains possessing the TetM determinant revealed that three patients had been treated with tetracycline within 1 month of the study; four patients had received no tetracycline therapy in this period. Although tetracycline therapy undoubtedly selected for Tet\(^{+}\) strains in some patients, the spread of these strains has occurred in the absence of direct tetracycline selective pressure in others. We predict that the number of Tet\(^{+}\) species possessing the TetM determinant will continue to increase. It is impossible to estimate the indirect impact that the 25.2-MDa conjugative plasmids will have on the microbiologic ecology of mucosal surfaces in patients treated with tetracycline. It may be possible for strains possessing the 25.2-MDa plasmid to acquire additional antibiotic resistance genes. Dillon et al. (3) reported the presence of the gono-
coccoc 4.4-MDa β-lactamase and conjugative plasmids in the
meningococcus in 1983. Recently, Ikeda et al. (5) successful-
ly transferred the 4.4-MDa β-lactamase plasmid from N.
gonorrhoeae to strains of N. meningitidis; the transconju-
gants did not inherit the conjugative plasmid. With the
introduction of the 25.2-MDa plasmid into strains of N.
meningitidis, the possibility exists that meningococci will be
able to acquire gonococcal β-lactamase plasmids, thus in-
creasing the potential for transfer of both plasmids both
within and between species.

This work was supported in part by Public Health Service grants
AI24136, AI12192, AI10672, and DE08049 from the National Insti-
tutes of Health.

We thank James W. Biddle, Mary E. Shepherd, Myrtle Thomas,
and Chris Thompkins for expert technical assistance.

LITERATURE CITED
1. Brown, J. T., and M. C. Roberts. 1987. Cloning and character-
ization of a tetM gene from a Ureaplasma urealyticum strain.
2. Burdett, V. 1980. Identification of tetracycline-resistant R-
Agents Chemother. 18:753-760.
3. Dillon, J. R., M. Pauze, and K.-H. Yeung. 1983. Spread of penicillinase-producing and transfer plasmids from the gono-
voirs for the beta-lactamase plasmids. J. Infect. Dis. 150:397-
401.
Conjugal transfer of beta-lactamase-producing plasmids of Neis-
seria gonorrhoeae to Neisseria meningitidis. Microbiol. Immu-
nol. 30:737-742.
fermentation medium for detection of acid production from
carbohydrates by Neisseria spp. and Branhamella catarrhalis.
persistence of Neisseria cinerea and other Neisseria spp. in
Distribution and frequency of strains of Neisseria gonorrhoeae
with plasmid-mediated, high-level resistance to tetracycline
1986. High-level tetracycline resistance in Neisseria gonor-
rhoeae is result of acquisition of streptococcal tetM determi-
Kenny. 1986. Tetracycline resistance and tetM in pathogenic
urogenital bacteria. Antimicrob. Agents Chemother. 30:810-
812.
tetM tetracycline resistance determinant to Ureaplasma urealy-
conjugative 25.2-megadalton tetracycline resistance plasmid
from Neisseria gonorrhoeae and related species. Antimicrob.
Agents Chemother. 32:488-491.
13. Roberts, M. C., L. A. Koutsky, K. K. Holmes, D. J. LeBlanc,
hominis strains contain streptococcal tetM sequences. Anti-