Outer Membrane Permeation of \textit{Bacteroides fragilis} by Cephalosporins

AKIRA YOTSUJI,† JUNICHI MITSUYAMA,† RITSUKO Hori,† TAKASHI YASUDA,† ISAMU SAIKAWA,† MATSUISHA INOUE,‡ AND SUSUMU MITSUHASHI‡

Research Laboratory, Toyama Chemical Co., Ltd., Toyama,† and School of Medicine, Gunma University, Maebashi,‡ Japan

Received 7 January 1988/Accepted 21 April 1988

Outer membrane permeation of \textit{Bacteroides fragilis} by cephalosporins was examined by a previously described method. The permeation parameters of cephalosporins in \textit{B. fragilis} were close to 10^{-8} cm2/min per μg of cell dry weight. These values were about an order of magnitude lower than those in \textit{Escherichia coli}. In \textit{B. fragilis}, the permeation was not directly proportional to the hydrophilicity of cephalosporins, and the ion selectivity was weak.

The mechanism of action of β-lactam antibiotics has been studied extensively in aerobic (4) and anaerobic (9) bacteria. Gram-negative bacteria, including \textit{Bacteroides fragilis}, are covered by an outer membrane which acts as a permeability barrier for various toxic materials such as antibiotics and detergents (6). \textit{B. fragilis} strains have been isolated from clinical specimens with an increasing frequency and are known to be moderately or highly resistant to penicillins and cephalosporins (2).

In this study, we performed a detailed analysis of the outer membrane permeation of \textit{B. fragilis} by cephalosporins.

Bacterial strains. \textit{B. fragilis} G-210, G-237, and G-242 were used in this study. These strains were isolated from clinical specimens and were highly resistant to β-lactam antibiotics owing to β-lactamase. \textit{B. fragilis} G-210 and G-242 constitutively produce typical species-specific cephalosporinases of \textit{B. fragilis} (14, 15). \textit{B. fragilis} G-237 constitutively produces a novel cephalosporinase which shows a unique substrate profile in hydrolyzing cephalosporins, cephams, penicillins, and carbenapens (14). The β-lactamase produced in the periplasmic space was used for the measurement of outer membrane permeation by cephalosporins. \textit{Escherichia coli} W3110 RGN823, which produces a TEM-type 3-lactamase, was also used in this study. \textit{B. fragilis} and \textit{E. coli} strains were stored in skim milk (10%) at $\sim70^\circ$C.

Antibiotics. The antibiotics used in this study were commercially available: cefamandole and cephaloridine, Shionogi Chemical Co., Ltd.; cefazolin and ceftezole, Fujisawa Pharmaceutical Co., Ltd.; cefoperazone, Toyama Chemical Co., Ltd.; cefusulodin, Takeda Chemical Industries, Ltd.; ceftalothon; Torii Pharmaceutical Co., Ltd.

Media. GAM broth and GAM agar (Nissui Pharmaceutical Co., Ltd.) were used to culture \textit{B. fragilis}. Antibiotic medium 3 (Difco Laboratories, Detroit, Mich.) was used to culture \textit{E. coli}.

Reverse-phase thin-layer chromatography. The hydrophobic character of the cephalosporins was expressed as the R_f value, which was measured by reverse-phase thin-layer chromatography (TLC). The polar mobile phase was acetate-Veronal buffer (pH 7.0; Winthrop Laboratories, Div. Sterling Drug Co., New York, N.Y.)-methanol (4:1; vol:vol). TLC silica gel 60 F$_{254}$, siliconized precoated plates (Merck & Co., Inc., Rahway, N.J.) were used as the nonpolar stationary phase. A sample was dissolved in the acetate-Veronal buffer to give about 3 mg/ml, and 1 to 2 μl of the solution was loaded onto the TLC plate.

β-Lactamase assay. β-Lactamase activity was assayed by a modification of the microiodometric method of Novick (8).

Assay of outer membrane permeation by cephalosporins. The assay of outer membrane permeation by cephalosporins was carried out as described previously (11, 16), except that the bacterial cells were grown in GAM broth for \textit{B. fragilis} and on antibiotic medium 3 for \textit{E. coli}. Cultures of 200 ml in the mid-logarithmic growth phase were harvested by centrifugation at 5,000 \times g for 15 min at 20°C. Cells were washed once with 0.1 M phosphate buffer (pH 7.0) containing 1 mM magnesium sulfate and were suspended in 30 ml of the same buffer. A portion of cell suspension was sonicated for 2 min at 4°C with an ultrasonic disruper. This suspension was used to measure the velocity of hydrolysis by disrupted cells (v_{disrupt}). The rest of the cell suspension was used directly for the measurement of the velocity of hydrolysis by intact cells (v_{intact}). At the same time that v_{intact} was measured, the intact cell suspension was centrifuged quickly for 2 min and β-lactamase activity of the supernatant was measured (v_{sup}).

The permeation parameter C (12) was calculated as follows: $C = (S_0 - S_f) [V_{\text{max}}S_f/(K_m + S_f)], S_f = (v_f/v_{\text{intact}}) \cdot [K_mS_f/(K_m + S_f)],$ and $V_{\text{max}} = [1 + (K_m/S_f)]v_{\text{sup}}$, where $v_f = v_{\text{disrupt}}$ $- v_{\text{sup}}$ and $v_f = v_{\text{intact}}$ $- v_{\text{sup}}$. V_{max} and K_m are the maximum velocity of hydrolysis of a test β-lactam antibiotic and Michaelis constant, respectively, S_f and S_i are concentrations of β-lactam antibiotics in the medium and in

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Hydrophilicity*</th>
<th>Permeation parameter (cm2/min per μg of cell dry wt [10$^{-8}$])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\textit{G-210}</td>
</tr>
<tr>
<td>Cefoperazone</td>
<td>0.35</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>Cefalothin</td>
<td>0.40</td>
<td>1.4 ± 0.7</td>
</tr>
<tr>
<td>Cefamandole</td>
<td>0.48</td>
<td>0.8 ± 0.5</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>0.71</td>
<td>0.7 ± 0.3</td>
</tr>
<tr>
<td>Ceftezole</td>
<td>0.80</td>
<td>0.9 ± 0.3</td>
</tr>
</tbody>
</table>

* A negative electrical charge was used for all permeation determinations.

Hydrophilicity is expressed as the R_f value of reverse-phase TLC.

Values are means ± standard deviations; $n = 3$.

† Corresponding author.
the periplasmic space of the cells, respectively, at steady state. The permeation parameter was normalized by the dry weight of cells in the assay mixture.

Effect of hydrophilicity on penetration rates. A large amount of leakage significantly alters the permeation parameter C. In *E. coli* W3110 RGN823, v_{intact} with cephalothin was 0.0091 to 0.012 μmol/min per μg of cell dry weight, v_{sup} was 0.0020 to 0.0069 μmol/min per μg of cell dry weight, and v_{disrupt} was 0.15 to 0.21 μmol/min per μg of cell dry weight. In *B. fragilis* G-210, v_{intact} with cephalothin was 0.0035 to 0.0054, v_{sup} was 0.0026 to 0.0034, and v_{disrupt} was 0.24 to 0.34 μmol/min per μg of cell dry weight, respectively. In our data, the overall v_{sup} with cephalosporins was between 40 and 80% of the overall v_{intact} in *B. fragilis* G-210, G-237, and G-242. On the contrary, the overall v_{intact} was between 2 and 15% of the overall v_{disrupt} of the same amount of cells. Although v_{intact} was low, v_{sup} was directly proportional to v_{intact} and v_{sup} was always lower than v_{intact}. So, the precision of the permeation parameter obtained might have been high. The permeation parameter C of *E. coli* W3110 RGN823 outer membrane by cephalothin was $1.5 \times 10^{-4} \pm 0.5 \times 10^{-4}$ cm/min per μg of cell dry weight. When this value was compared with that of the *E. coli* YA21 outer membrane toward the same compound (2×10^{-4} cm/min per μg of cell dry weight) (12; A. Yamaguchi, N. Tomiyama, R. Hiruna, and T. Sawai, submitted for publication), the reliability of our result was found to be acceptable.

The relationship between outer membrane permeation by a series of monoanionic cephalosporins and the hydrophilicity of the cephalosporins in *B. fragilis* is shown in Table 1. The hydrophilicity of cepofepazone was low; this was followed by the hydrophilicities of cephalothin, cefamandole, cefazolin, and ceftezole. Permeation by cephalothin was nearly equal; i.e., the permeation parameter C was 0.7×10^{-5} to 1.4×10^{-5} cm/min per μg of cell dry weight in *B. fragilis* G-210, 0.8 $\times 10^{-5}$ to 3.1×10^{-5} cm/min per μg of cell dry weight in *B. fragilis* G-237, and 0.7 $\times 10^{-5}$ to 2.0×10^{-5} cm/min per μg of cell dry weight in *B. fragilis* G-242. These values were about an order of magnitude lower than those of *E. coli* (12).

Although the permeation was directly proportional to the hydrophilicity of cephalosporins in *E. coli* (7, 12) and *Proteus* sp. (5), it was not in *B. fragilis*. It is also known that the additional positive charge of the solute molecule accelerates the diffusion process through the porin pores in *E. coli* and *Proteus* sp. but that an increase in negative charge markedly decreases the permeation by solutes (1, 5, 7, 13). In *B. fragilis*, the additional positive charge did not accelerate the diffusion process and the additional negative charge slightly decelerated the diffusion process. The ion selectivity was weak.

We thank Prof. H. Hashimoto for advice and helpful discussions.

LITERATURE CITED

TABLE 2. Effect of additional positive or negative charges on outer membrane permeations of *B. fragilis* G-210, G-237, and G-242

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Hydrophilicity<sup>#</sup></th>
<th>Electrical charge</th>
<th>Permeation parameter (cm<sup>3</sup>/min per μg of cell dry wt [10<sup>-5</sup>]<sup>α</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G-210</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>0.41</td>
<td>−, +</td>
<td>1.4 ± 0.6</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>0.40</td>
<td>−</td>
<td>1.5 ± 0.7</td>
</tr>
<tr>
<td>Ratio A/B</td>
<td></td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>Cephaloridine</td>
<td>0.41</td>
<td>−, +</td>
<td>1.4 ± 0.6</td>
</tr>
<tr>
<td>Cefsulodin</td>
<td>0.90</td>
<td>−, −, +</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>Ratio A/B</td>
<td></td>
<td></td>
<td>4.67</td>
</tr>
</tbody>
</table>

[#] Hydrophilicity is expressed as the R_f value of reverse-phase TLC.

^α Values are mean ± standard deviations; $n = 3$.
β-lactam antibiotics, p. 41–56. In S. Mitsuhashi (ed.), Beta-
lactam antibiotics. Springer-Verlag, New York.
Identification of porins in the outer membrane of Proteus,
Morganella, and Providencia and their role in the outer mem-
membrane, p. 361–407. In M. Inoue (ed.), Bacterial outer
channels in Escherichia coli: studies with β-lactams in intact
bility to beta-lactam antibiotics and production of beta-lactamase in
contributing to resistance to beta-lactam antibiotics in Bacte-
measuring the outer membrane-permeability of β-lactam antibi-
Difference in pathway of Escherichia coli outer membrane
permeation between penicillins and cephalosporins. FEBS Lett.
antibiotics through the porin channels of Escherichia coli K-12.
Properties of a novel β-lactamase produced by Bacteroides
Inoue, and S. Mitsuhashi. 1985. Cephamycin inactivation due to
enzymatic hydrolysis by β-lactamase from Bacteroides fragilis.
membrane of Escherichia coli as a permeability barrier to
beta-lactam antibiotics. Antimicrob. Agents Chemother. 12:
368–372.