Biliary and Pancreatic Excretion of Cefamandole

GERARD P. BURNS,* THEODORE A. STEIN, AND MARTIN COHEN

Department of Surgery, Long Island Jewish Medical Center, New Hyde Park, New York 11042, and State University of New York at Stony Brook, Stony Brook, New York 11794

Received 20 September 1988/Accepted 22 March 1989

After intravenous infusion of secretin and cholecystokinin in six dogs, cefamandole (50 mg/kg of body weight) was given intravenously for 10 min. Samples of serum, bile, pancreatic juice, liver, pancreas, fat, and muscle were collected over a 2-h period. Cefamandole levels were measured by a microbiological assay. The highest levels were as follows: serum, 160 μg/ml; bile, 3,071 μg/ml; pancreatic juice, 7 μg/ml; liver, 101 μg/g; pancreas, 44 μg/g; muscle, 20 μg/g; and fat, 14 μg/g. Levels in pancreatic juice were extremely low compared with levels in pancreatic tissue, suggesting the existence of a barrier to excretion at the ductal membrane.

Cefamandole is excreted in bile at high concentrations (1, 5-9, 11, 13) and may therefore be useful in the treatment and prophylaxis of biliary tract infections. In contrast, low levels of cefamandole in pancreatic juice have been reported (3, 12). It is uncertain whether this antibiotic achieves therapeutic levels in pancreatic tissue. In the present study, we measured cefamandole levels in the livers and pancreases of anesthetized dogs and compared these with levels in serum, bile, and pancreatic juice to determine the pattern of distribution and the relative degree of biliary and pancreatic excretion.

Six mongrel dogs weighing 15 to 20 kg each were used. General anesthesia was induced by giving ketamine hydrochloride (88 mg/kg of body weight) plus xylazine (13 mg/kg). Additional doses were given as required to maintain anesthesia for the period of the experiment. A Harvard ventilator and endotracheal incubation were used to maintain respiration on room air.

Laparotomy was performed, the second part of the duodenum was opened, and the main pancreatic duct was cannulated with fine polyethylene tubing. The accessory pancreatic duct was ligated. The common bile duct was opened, and a polyethylene cannula was passed towards the liver and tied in position after ligation of the lower end of the bile duct. The cystic duct was then ligated to exclude the gallbladder and permit collection of hepatic bile. A cannula was placed in a large vein in the foreleg to infuse secretin (0.06 U/kg per min; KabiVitrum) combined with the octapeptide of cholecystokinin (0.004 μg/kg per min; Squibb). Pancreatic juice was collected every 10 min until a constant flow was maintained for 30 min. Base-line samples of pancreatic juice and bile were then collected for 10 min, and a blood sample was taken at the midpoint of the 10-min collection period. Simultaneously, tissue samples of the liver, pancreas, rectus abdominus muscle, and extraperitoneal fat were taken for tissue assays of cefamandole. Cefamandole was then infused in a dose of 50 mg/kg given over a period of 10 min. Samples of blood, bile, pancreatic juice, liver, pancreas, muscle, and fat were taken again at 20, 40, 60, 90, and 120 min after administration of cefamandole.

The samples were assayed by Lilly Research Laboratories by using a microbiological agar diffusion assay with Bacillus subtilis ATCC 6633 as the test microorganism. The cefamandole standard curve levels ranged from 0.25 to 10.0 μg/ml.

Control dog sera were used to dilute serum samples and standard solutions of cefamandole. Bile and pancreatic juice were diluted with phosphate buffer at pH 6.0 and assayed against standard curves of fluids diluted with the buffer. Tissue samples (fat, muscle, liver, and pancreas) were minced and homogenized in the buffer at a ratio of 1 g/10 ml with a Polytron homogenator set at position 7 for 20 s. After centrifugation, the supernatant was assayed for cefamandole activity. The assays of the standards and samples had a relative standard deviation of 10%. The control dog sera and the buffer diluents were tested to ensure that they contained no biological activity. The antibiotic values for the same tissue or fluid were compared statistically by one-way analysis of variance. The values for different tissues or fluids at the same collection time were compared by one-way analysis of variance and the Student-Neuman-Keuls test.

The mean concentrations of cefamandole after intrave-

![Graph](http://aac.asm.org/)

FIG. 1. Semi-log plot of mean levels of cefamandole in body fluids and tissues after a 50-mg/kg intravenous dose.

* Corresponding author.
TABLE 1. Cefamandole concentrations in fluids and tissues after an intravenous dose

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Serum (µg/ml)</th>
<th>Pancreatic juice (µg/ml)</th>
<th>Bile (µg/ml)</th>
<th>Liver (µg/g)</th>
<th>Pancreas (µg/g)</th>
<th>Muscle (µg/g)</th>
<th>Fat (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><0.3</td>
<td><0.5</td>
<td><0.5</td>
<td><1.0</td>
<td>101.4 ± 13.3d</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>20</td>
<td>160 ± 22b,c</td>
<td>6.6 ± 1.5b</td>
<td>2.861 ± 574'</td>
<td>44.0 ± 4.4'</td>
<td>20.5 ± 3.4d,e</td>
<td>9.0 ± 1.7d,e</td>
<td><1.0</td>
</tr>
<tr>
<td>40</td>
<td>70 ± 11b,c</td>
<td>1.7 ± 0.7b</td>
<td>3.071 ± 493'</td>
<td>74.5 ± 14.0d</td>
<td>25.9 ± 2.5'</td>
<td>16.3 ± 2.1'</td>
<td>13.8 ± 4.0'</td>
</tr>
<tr>
<td>60</td>
<td>48 ± 7b,c</td>
<td>1.0 ± 0.3b</td>
<td>1.849 ± 248'</td>
<td>41.0 ± 3.3d</td>
<td>20.4 ± 4.0'</td>
<td>14.2 ± 3.6'</td>
<td>9.7 ± 4.0'</td>
</tr>
<tr>
<td>90</td>
<td>27 ± 5b,c</td>
<td>0.6 ± 0.4b</td>
<td>801 ± 168'</td>
<td>15.8 ± 1.3</td>
<td>10.6 ± 3.9</td>
<td>6.9 ± 1.0</td>
<td>3.9 ± 0.7f</td>
</tr>
<tr>
<td>120</td>
<td>17 ± 4b,c</td>
<td><0.5b</td>
<td>277 ± 33c</td>
<td>7.8 ± 1.1</td>
<td>5.4 ± 1.7</td>
<td>6.7 ± 1.9</td>
<td>4.4 ± 1.1c</td>
</tr>
</tbody>
</table>

* Mean ± standard error of the mean; n = 6.
** P < 0.05 compared with value for bile.
*** P < 0.05 compared with value for pancreatic juice.
**** P < 0.05 compared with value for pancreas.
***** P < 0.05 compared with value for liver.

In this study, levels in pancreatic juice were low or undetectable. Despite these low levels, the levels in pancreatic tissue were 7 to 20 times higher. These data confirm the presence of a barrier to pancreatic excretion of cefamandole by the acinar cells. In a previous study with conscious dogs, our results suggested the existence of a barrier in the pancreas for certain antibiotics but not for others (3). We were unable to determine whether the barrier occurred at the acinar cell-ductal membrane level or at the blood-acinar cell level. The present study indicates that for cefamandole, the barrier occurs between the pancreatic tissue and the pancreatic juice, that is, at the acinar cell-ductal membrane level.

In our study, secretin and cholecystokinin were used to stimulate the flow of pancreatic juice and bile because of the difficulty in collecting basal pancreatic secretion, which is of very low volume in the anesthetized dog. It is conceivable that the hormones altered excretion of the antibiotic. However, even without hormonal stimulation, biliary cefamandole levels are high (1, 5, 9, 11). The volume of pancreatic secretion obtained by the hormonal infusion was similar to that observed by us following meal meal stimulation and probably corresponds to physiological levels (2).

Levels in pancreatic tissue were approximately half the levels in liver but exceeded the corresponding values in muscle and fat. All the levels in tissue appeared to be within the therapeutic range for susceptible organisms. During pancreaticobiliary infections, there may be alterations in the levels in tissue related to changes in blood flow and damage to cellular membranes (10), but we have not yet studied these aspects.

LITERATURE CITED