NOTES

Identification of a Methicillin-Resistant Strain of \textit{Staphylococcus caprae} from a Human Clinical Specimen

KAYOKO KANDA,¹ EIKO SUZUKI,¹ KEIICHI HIRAMATSU,¹* TOYOKO OGURI,² HIDEAKI MIURA,³ TAKAYUKI EZAKI,³ and TAKESHI YOKOTA³

Department of Microbiology, Faculty of Medicine,¹ and Clinical Laboratory,² Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113, and Department of Microbiology, Gifu University School of Medicine, 40 Tsukasa-machi, Gifu 500, Japan

Received 6 June 1990/Accepted 31 October 1990

The analysis of gel banding patterns of penicillin-binding proteins was used to identify two clinical isolates of a coagulase-negative \textit{Staphylococcus} species as \textit{Staphylococcus caprae}, a species originally isolated from goat's milk. One of the isolates was further shown to carry \textit{mecA}, the structural gene for methicillin resistance.

Coagulase-negative staphylococci, although historically regarded as less pathogenic than their coagulase-positive counterpart \textit{Staphylococcus aureus}, have become more and more recognized as important nosocomial pathogens (1, 8, 11). Recently, clinical coagulase-negative staphylococcus isolates of various species have been shown to be resistant to methicillin. So far, such species of coagulase-negative staphylococci as \textit{Staphylococcus epidermidis}, \textit{Staphylococcus haemolyticus}, and \textit{Staphylococcus simulans} were proven to carry the methicillin resistance gene \textit{mecA} (12–14) or to produce its product, PBP 2' (3). While studying the distribution of \textit{mecA} among coagulase-negative staphylococcus strains isolated at Juntendo University Hospital, we noticed two coagulase-negative staphylococcus strains whose taxonomic positions could not be identified by conventional biochemical tests. Using analysis of the gel electrophoretic banding pattern of penicillin-binding proteins (PBP profile; 2, 10), we identified these isolates as \textit{Staphylococcus caprae}, a species the original members of which were isolated from goat's milk (4). One of the isolates was further shown to be methicillin resistant, and the \textit{meca} gene was identified in its genome.

MICs of \(\beta\)-lactam antibiotics for eight clinical coagulase-negative staphylococcus strains isolated in 1989 at Juntendo University Hospital are presented in Table 1. MICs were determined by the plate dilution method as described previously (15). Six were methicillin resistant (JA5, JA6, JA51, JA177, JA178, and JA187), and two were methicillin suscep-

<table>
<thead>
<tr>
<th>Strain</th>
<th>Species*</th>
<th>DMPPC</th>
<th>CEZ</th>
<th>CMZ</th>
<th>CZON</th>
<th>IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA3</td>
<td>\textit{S. haemolyticus}</td>
<td><3.13</td>
<td>0.2</td>
<td>0.78</td>
<td>0.2</td>
<td><0.05</td>
</tr>
<tr>
<td>JA5</td>
<td>\textit{S. haemolyticus}</td>
<td>25</td>
<td>50</td>
<td>3.13</td>
<td>6.25</td>
<td><0.05</td>
</tr>
<tr>
<td>JA6</td>
<td>\textit{S. haemolyticus}</td>
<td>25</td>
<td>25</td>
<td>3.13</td>
<td>6.25</td>
<td>0.1</td>
</tr>
<tr>
<td>JA21</td>
<td>NI</td>
<td><3.13</td>
<td>0.2</td>
<td>0.78</td>
<td>0.1</td>
<td><0.05</td>
</tr>
<tr>
<td>JA51</td>
<td>\textit{S. saprophyticus}</td>
<td>6.25</td>
<td>0.39</td>
<td>3.13</td>
<td>0.39</td>
<td><0.05</td>
</tr>
<tr>
<td>JA177</td>
<td>\textit{S. epidermidis}</td>
<td>25</td>
<td>12.5</td>
<td>50</td>
<td>100</td>
<td>6.25</td>
</tr>
<tr>
<td>JA178</td>
<td>\textit{S. haemolyticus}</td>
<td>25</td>
<td>0.78</td>
<td>6.25</td>
<td>0.78</td>
<td><0.05</td>
</tr>
<tr>
<td>JA187</td>
<td>NI</td>
<td>>100</td>
<td>12.5</td>
<td>25</td>
<td>50</td>
<td>6.25</td>
</tr>
</tbody>
</table>

* Determined by API Staph micromethod. NI, Not identified by API Staph micromethod. All strains produced \(\beta\)-lactamase.

Abbreviations: DMPPC, methicillin; CEZ, cefazolin; CMZ, cefmetazole; CZON, ceftizoxime; IPM, imipenem.

* Corresponding author.
by side with those of type strains for identification (Fig. 1c).

The identifications of six strains based on the PBP profiles coincided with those based on the API Staph method, whereas the PBP profiles of JA21 and JA187 were found to correspond to that of S. caprae (Fig. 1c, lanes 20–22). This finding was unexpected because the species had not previously been isolated from human sources, and both patients from whom these strains were isolated had no history of contact with goats. To confirm this identification, DNA-DNA hybridization was performed as described previously (6). Chromosomal DNA extracted from strains JA21 and JA187 was photobiotinylated and hybridized with DNAs of 27 staphylococcus type strains which were immobilized in microtiter plate wells. The 27 type strains used as references included S. aureus subsp. aureus ATCC 12600, S. aureus subsp. an aerobius ATCC 35844, S. epidermidis ATCC 14990, S. haemolyticus ATCC 29970, S. saprophyticus ATCC 15305, S. auricularis ATCC 33753, S. cohnii ATCC 29974, S. hominis ATCC 27844, S. simulans ATCC 27848, S. caseolyticus ATCC 29750, S. saccharolyticus ATCC 15943, S. sciuri ATCC 29062, S. lentus ATCC 29070, S. xylosus ATCC 29971, S. lugdunensis ATCC 43809, S. schleiferi ATCC 43808, S. delphini DSM 20771, S. warneri ATCC 27836, S. gallinarum CCM 3572, S. caprae CCM 3573, S. hyicus ATCC 11247, S. capitis ATCC 27840, S. carnosus DSM 20501, S. equorum DSM 20674, S. kloosii DSM 20676, S. arlettae DSM 20672, and S. intermedius ATCC 29663. The DNAs of JA21 and JA187 were found to hybridize most strongly with the reference DNA of S. caprae CCM 3573 (data not shown). Therefore, identification based on PBP profile was supported by DNA-DNA hybridization, and strains JA21 and JA187 were concluded to belong to the species S. caprae.

Both strains of S. caprae were isolated from patients after continuous use of antibiotics (mostly β-lactams) for more than 3 weeks. There was no evidence that these S. caprae strains were responsible for the patients' infections. JA21 was isolated transiently during chemotherapy of dermatitis, and JA187 was also isolated transiently during chemotherapy of a urinary tract infection caused by methicillin-resistant S. aureus. Thus, the S. caprae strains did not seem to be potent in their pathogenicity and were likely present as a result of superinfection during chemotherapy.

The prevalence of S. caprae in clinical coagulase-negative staphylococcus isolates seems to be considerably high. In Juntendo University Hospital, we have so far isolated 13 other strains of S. caprae in 1990. These isolates accounted
for 11% of total methicillin-resistant coagulase-negative staphylococcus isolates. Characteristically, they were isolated transiently during chemotherapy and their causative role in infection was not evident. It was also noticed that most strains were isolated not at the time of admission but after at least a week of hospitalization, indicating the nosocomial nature of the colonization by the organism. Recently, Ezaki et al., using DNA-DNA hybridization, observed that more than 6% of 1,500 clinical coagulase-negative staphylococcus isolates belong to S. caprae (5). On the basis of these findings, it seems likely that at least some biotypes of the species S. caprae can inhabit the human body and are quite widely distributed in hospitals.

One of the two S. caprae strains, JA187, was resistant to methicillin and cephem antibiotics (Table 1). To determine whether this resistance was caused by the same genetic mechanism as that of methicillin-resistant S. aureus (13), we performed Southern blot analysis of HindIII-digested DNA of JA187 using a mecA-specific DNA probe from pMR111 (7), with a washing condition of 0.1× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) for 60 min at 65°C. The result is presented in Fig. 2. As positive controls, three methicillin-resistant staphylococcus strains were analyzed in parallel. With JA187 (Fig. 2, lane 2), a band of about 4.2 kb which had the same migration rate as those of JA186 (S. hominis; lane 3) and JA187 (S. epidermidis; lane 1) and a slightly slower migration rate than the 4.0-kb band of MR108 (methicillin-resistant S. aureus; lane 4) was observed. From this result, we concluded that JA187, a clinical isolate of S. caprae, possessed the mecA gene. So far, we have observed the mecA gene among such coagulase-negative staphylococcus species as S. epidermidis, S. haemolyticus, S. saprophyticus, S. hominis, S. capitis, S. warneri, and S. simulans (unpublished observation). All of these strains are known as habitants of the human body. The presence of the mecA gene in one of the S. caprae strains indicated a wider distribution of the gene among coagulase-negative staphylococcus species than we had initially expected. We are undertaking a more extensive survey of clinical coagulase-negative staphylococcus isolates for the distribution of mecA gene.

This work was partially supported by a grant from the Japanese Ministry of Education.

REFERENCES

