The Unstable Tetracycline Resistance Gene of *Streptomyces lividans*
1326 Encodes a Putative Protein with Similarities to Translational Elongation Factors and Tet(M) and Tet(O) Proteins

W. DITTRICH AND H. SCHREMPF*

FB Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany

Received 27 July 1991/Accepted 15 February 1992

*Corresponding author.

0066-4804/92/051119-06$02.00/0

Copyright © 1992, American Society for Microbiology

Streptomyces lividans contains a genetically unstable tetracycline resistance determinant. Nucleotide sequencing revealed an open reading frame of 1,917 nucleotides. The transcriptional start site was mapped at about 110 bp upstream of the ATG codon. The proposed promoter contains an 8-bp perfect inverted repeat between the −10 and −35 regions. The deduced amino acid sequence showed several motifs which are commonly found in many GTP-binding proteins. On the basis of its amino acid sequence, the presumptive *S. lividans* 1326 protein belongs to the Tet(M)-Tet(O) group of tetracycline resistance proteins and shows significant similarity to translational elongation factors of prokaryotes and eukaryotes.

Tetracycline resistance is widespread among bacteria. Various genes that encode resistance have been analyzed in gram-positive and gram-negative bacteria (15, 26). These genes can be assigned to three groups, reflecting the different mechanisms of resistance observed against this drug. First, the prevention of intracellular accumulation of tetracycline because of an energy-dependent efflux of the drug has been described mainly for members of the family *Enterobacteriaceae* and related genera (15, 21). This efflux is mediated by a metal-tetracycline and H⁺ antipporter (31).

The second mechanism of resistance is due to protection of the ribosymes by soluble cytoplasmic proteins [Tet(M)-Tet(O)] (3). The nucleotide sequences of *tet* genes belonging to this group were identified in various bacteria such as *Streptococcus* spp. (3), *Mycoplasma hominis* (24), and *Campylobacter jejuni* (18). The deduced amino acid sequences show significant similarities to various elongation factor proteins (4, 17). One of the resistance proteins, the streptococcal Tet(M) protein, has been overexpressed under the control of a T7 promoter and has been purified to near homogeneity. The purified protein was shown to have a ribosome-dependent GTPase activity (4). The sequence similarity of Tet(M) with EF-G and proteins with similar activities support the idea that Tet(M) might act as a tetracycline-resistant elongation factor (17). Burdett (4) showed, however, that Tet(M) could substitute for neither EF-Tu in *Bacillus subtilis* nor EF-G in *Escherichia coli*.

A third mechanism involves the inactivation of tetracycline by modification and has been reported in *Bacteroides fragilis*. This determinant is cryptic in *B. fragilis* but is active in *E. coli*, in which oxygen is required for detoxification of the drug (29).

The oxytetracycline-producing strain *Streptomyces rimosus* was shown to contain at least two resistance genes, one of the efflux type and the other belonging to the ribosome protection group (5, 23).

In *Streptomyces lividans*, tetracycline resistance is a highly unstable trait. Susceptible variants arise spontaneously at frequencies of 10⁻², and about 10% of these subsequently segregate to variants which lack positive regulation of glutamine synthetase (8). We previously reported the cloning of the tetracycline resistance determinant from *S. lividans*. Tetracycline-susceptible variants of *S. lividans* and *Streptomyces coelicolor A3(2)* are due to large deletions, including deletions of the relevant gene (14, 28). Hybridization of *S. lividans* DNA with the *otrA* gene of *S. rimosus* showed significant, but limited, homology (14). We report here the nucleotide sequence of the tetracycline resistance gene from *S. lividans*. The amino acid sequence deduced from the DNA sequence shows significant similarity to the sequences of Tet(M) and Tet(O) proteins and various translational elongation factors. The 5' end of the transcript was mapped in *S. lividans*, and a highly resistant strain was derived from the wild type. The proposed promoter structure, which contains an 8-bp inverted repeat, is discussed. Furthermore, we demonstrated that highly resistant strains do not carry mutations in the upstream sequence, including the proposed promoter region.

Materials and Methods

Bacterial strains and plasmids. The following tetracycline-resistant *Streptomyces* strains from the German Culture Collection (DSM) were used: *S. griseus* DSM 40236, *S. flavopersicum* DSM 40093, *S. albus* DSM 40763, and *S. cirreoeufluorescens* DSM 40265. *S. platensis* and *S. tendae* were provided by A. Stöckigt (Münch, Germany) and H. Zähner (Tübingen, Germany), respectively. The highly resistant strains *S. lividans* THR1 and THR2 were isolated from the wild-type strain by stepwise selection. THR1 and THR2 are resistant to 200 μg of tetracycline per ml on YESE agar plates (10), whereas the wild-type strain tolerates only 40 μg of the drug per ml. Plasmids pUC18 (32) and pUS18 (constructed in our laboratory by inserting an additional SsrII-NotI-SfiI-SpeI linker into the pUC18 BamHI site) were used as cloning vectors for DNA sequence analysis. The *E. coli* strains JM109 (32) and K-12 F⁻ F'Z− M15 (25) served as hosts.

Preparation and in vitro manipulation of DNA. Plasmids were prepared by using the Qiagen plasmid kit (Diagen, Hilden, Germany) according to the instructions of the manufacturer. Recovery of DNA from agarose gels, ligation,
transformation (19), and hybridization with biotinylated probes has been described earlier (8).

DNA sequence determination and analysis. Dideoxy sequencing reactions on double-stranded templates were carried out by using defined restriction fragments subcloned in pUC18 or pUS18 vectors with [α-32P]dATP as the labeled nucleotide. The Sequenase II Sequencing Kit of U.S. Biochemicals was used according to the instructions of the manufacturer. Sequencing analysis was performed with site-specific as well as pUC18 universal primers.

The determined sequence was analyzed further by using the program FASTA. The SwissProt (release 18) and EMBL (March 1991) data bases were used for sequence comparisons.

Isolation of RNA. RNA was isolated from cultures which were grown in YEME (10) containing 10 μg (S. lividans 1326) or 40 μg (S. lividans THR1) of tetracycline per ml. At 30 min before RNA isolation, tetracycline was added to final concentrations of 15 μg/ml (strain 1326) and 60 μg/ml (strain THR1). RNA was isolated as described by Hopwood et al. (10).

High-resolution S1 nuclease mapping. A XhoI-KpnI fragment was cloned into M13mp19 (pTC116). Single-stranded DNA of this recombinant phage was annealed to an oligonucleotide primer (ol114/3) which was extended by primer extension in the presence of 32PdATP (3,000 Ci/mol). The labeled probe was hybridized against 40 μg of total RNA at 50°C and digested with nuclease S1 as described by Hopwood et al. (10). Protected hybrids were electrophoresed on sequencing gels and were compared with a sequencing ladder obtained from pTC116, with ol114/3 used as the oligonucleotide primer.

PCR. The polymerase chain reaction (PCR) was performed by using Taq polymerase (Bethesda Research Laboratories, Eggenstein, Germany) according to the instructions of the manufacturer. The first round of amplification with 20mers (olTC114/2, TGAGCGGCACGCACCTGGG; olTC114/3, ACCGCGGTGAGGCTGGGCCA) as primers was performed by using standard conditions (12). For a subsequent asymmetric amplification, 100 ng of the products of the first reaction were used. The products were purified on low-melting-point agarose gels. Only one primer was used to amplify single-stranded DNA for sequencing as described above.

Nucleotide sequence accession number. The nucleotide sequence described here was deposited in the GenBank data base and was given the accession number M74049.

RESULTS

Analysis of the DNA sequence. Previously, we reported the cloning of the tetracycline resistance determinant of *S. lividans* (14). Both strands of a 2.3-kb *SphI-XhoI* fragment containing the resistance gene were sequenced by the strategy depicted in Fig. 1. The nucleotide sequence of this 2.3-kb fragment that we determined showed a single open reading frame from nucleotides 343 to 2259 (Fig. 2). The G+C content of the coding region was 76 mol%, which is slightly greater than that described for other *Streptomyces* genes (1). Within the coding region, a strong preference for codons with G or C in the third position, which is characteristic for *Streptomyces* coding sequences, can be observed (1, 11).

A possible ribosomal binding site is located 15 bp upstream from the start codon, but ribosomal binding sites can be spaced farther away from the start codon in *Streptomyces* spp. This open reading frame could encode a protein of 639 amino acids with a calculated molecular mass of 67.1 kDa. The deduced amino acid sequence shows five motifs which are characteristic for GTP-binding proteins (underlined amino acids in Fig. 2).

Comparison of DNA and protein sequences. The determined nucleotide sequence was compared with sequences deposited in the EMBL data base. The best score was found with the otrA gene of *S. rimosus* (59% identical nucleotides). Further similarities were found with genes that encode EF-G or EF-2 from microorganisms with a high G+C content (stro of *Micrococcus luteus*, 53.7%; ef2 of *Halobacterium halobium*, 53.3%; fus of *Thermus thermophilus*, 51.9%).

Significant homology of the *S. lividans* Tet' protein was detected with several other Tet' proteins belonging to the Tet(M) or Tet(O) class. The highest score (64.7% identity) was obtained with the protein encoded by the otrA gene (Fig. 3). About 34% identical amino acids were found with Tet(M) proteins of Tn916, Tn1545, and *Ureaplasma urealyticum* (Fig. 3) and with Tet(O) proteins of *C. jejuni* (Fig. 3) and *Streptococcus mutans*.

The most extensive similarities were observed within the N-terminal 130 amino acids of the deduced proteins: 70% identical amino acids with *S. rimosus* OtrA and 60.7% identical amino acids with the *U. urealyticum* Tet(M) protein, the *Streptococcus faecalis* Tet(M) protein, and the *C. jejuni* Tet(O) protein. Significant similarities to various translational elongation factors like EF-G or EF-2 were found (Fig. 3). Again, the most extensive similarities were observed within the N-terminal 130-amino-acid overlap of these proteins; 43 to 47% of the amino acids of the *S. lividans* Tet' protein were identical to those of EF-G factors from the following five bacteria: *Thermus aquaticus*, *Anacystis nidulans*, *Spirulina platensis*, *M. luteus*, and *E. coli*. Less similarity was found within the N-terminal sequences of the eukaryotic or archaeabacterial elongation factor EF-2 (30 to
FIG. 2. Nucleotide sequence of the tetracycline resistance gene and the deduced amino acid sequence. Putative start codon and the Shine-Dalgarno sequence are underlined in the DNA sequence. The primer sequences used for PCR are double underlined. Asterisks indicate the transcriptional start sites; arrows indicate inverted repeat structures. Amino acids which were involved in the formation of the GTP-binding site are underlined in the amino acid sequence. Similarities of the S. lividans Tet' protein with other translation factors (EF-Tu, IF2), which contain the same GTP-binding motifs as EF-G, are limited to this domain (Fig. 3).

Distribution of the tet' gene among other streptomycetes. The Sph1-cleaved DNAs of six other resistant Streptomyces strains were hybridized to the cloned S. lividans tetracycline resistance gene. None of the DNAs hybridized strongly with the S. lividans tetracycline resistance gene. In addition to the strongly hybridizing fragment in S. lividans, one other frag-
ment which was also present within the DNA of all other *Streptomyces* strains tested was detected. This signal was also obtained with tetracycline-susceptible variants of *S. lividans* and might reflect hybridization to an elongation factor gene of this organism (data not shown).

Mapping of the tetracycline resistance gene transcriptional start sites. For high-resolution S1 nuclease mapping, 40 μg of total RNA of *S. lividans* 1326 or *S. lividans* THR1 was used in each experiment. With both strains, two protected fragments of equal intensities were detected; they corresponded to nucleotides 233 and 234 (Fig. 2). The transcriptional start sites of the fragments are located 109 and 110 bp upstream from the translational start codon, respectively. The proposed promoter resembles a group of *Streptomyces* promoters which share similarities with the *E. coli* consensus promoter (Fig. 4). The most conserved nucleotides at −35 (TGG at positions −35, −34, and −33) and −10 (T and A at positions 6 and 2, respectively) were present in the proposed tet' promoter. Nevertheless, the tet' gene cloned into pUC18 did not confer resistance to *E. coli*. Between the −10 and −35 regions, only G or C residues were present, including a perfect 8-bp inverted repeat (Fig. 4).

Analysis of highly resistant strains. Recently, we isolated *S. lividans* strains that were highly resistant (200 μg/ml) to tetracycline. In contrast to the *cmil* gene found in highly chloramphenicol-resistant strains (6), the tet' gene was shown not to be amplified (14). Another explanation for high-level resistance could involve increased expression of the gene, which is caused by mutation of controlling elements such as promoters, ribosome-binding sites, or represor- or activator-binding sites. Therefore, we analyzed a 300-bp upstream region of the tetracycline resistance gene from highly resistant strains for putative changes in nucleotide sequence. A 327-bp fragment was amplified by PCR by using 0.5 μg of total DNA isolated from two highly resistant strains, THR1 and THR2. The primers used for PCR are given in Fig. 2. Sequence analysis was performed for both strands of the amplified products, but comparison of the nucleotide sequences obtained from highly resistant strains and the wild type showed no differences.

DISCUSSION

On the basis of its deduced amino acid sequence, the *S. lividans* protein belongs to the ribosome protection type of tetracycline resistance determinants. The *S. lividans* sequence shares significant similarity at the DNA and protein levels with the *otrA* (7) sequence from the oxytetracycline-producing strain *S. rimosus*. Although there is significant homology at the amino acid level between the presumptive
variants were proposed to confer cross-resistance to fusidic acid. We showed that in *S. lividans*, increased resistance to tetracycline is due neither to amplification of the gene, as observed for *Campylobacter* and *S. rimosus* operons (6), nor to changes in the nucleotide sequence upstream from the start codon. A possible explanation might be the activation of a second, previously silent resistance gene. Spontaneously tetracycline-resistant colonies frequently arise after protoplasting and regeneration of strains from which the tet' gene has been deleted. Activation of a previously cryptic energy-dependent efflux system for tetracycline has been described for highly resistant strains of *E. coli* (9). Since protoplasting is known to cause DNA rearrangements, activation of a formerly cryptic tetracycline resistance gene also cannot be ruled out in *S. lividans*.

ACKNOWLEDGMENTS

We thank J. Schnellmann and S. Walter for help with the computer programs, M. Betzler for critical reading of the manuscript, D. Müller for photographic work, and J. Schneider for help with the PCRs. W.D. gratefully acknowledges receipt of a short-term EMBO fellowship (at the Department of Genetics, University of Glasgow, Glasgow, Scotland) which made the S1 nuclease mapping experiments possible. We also thank I. S. Hunter for discussion and A. Thamchaipenet and S. McGregor for help with the RNA work. Partial of this work was supported by the Deutsche Forschungsgemeinschaft (SFB145/B7), University Munich, and the MKW, Hannover, Germany.

REFERENCES

1124 DITTRICH AND SCHREMPF

