NOTES

Antibiotic Susceptibility of Pseudomonas pseudomallei

WENDELL H. HALL AND ROBERT E. MANION
Infectious Disease Section, Veterans Administration Hospital, Minneapolis, Minnesota 55417

Received for publication 11 May 1973

The in vitro activity of various antibiotics against Pseudomonas pseudomallei was studied. The tetracyclines were the most active, followed by gentamicin, kanamycin, novobiocin, chloramphenicol, rifampin, cycloserine, erythromycin, and ampicillin.

Treatment of mild forms of human melioidosis has been successful with chloramphenicol or tetracyclines. Patients with septicemia or fulminating pneumonia, however, may die despite use of multiple antibiotics in large doses. Treatment failures have occasionally been traced to acquisition of antibiotic resistance. Previous comparisons of in vitro susceptibility to antibiotics have shown the tetracyclines, chloramphenicol, novobiocin, kanamycin, sulfona-
Fig. 2. Cumulative percentage of strains of P. pseudomallei inhibited by aminoglycoside antibiotics.

Fig. 3. Cumulative percentage of strains of P. pseudomallei inhibited by novobiocin, chloramphenicol, rifampin, cycloserine, erythromycin, and ampicillin.
mides, and rifampin to be active (1-6). The present study was undertaken to compare the susceptibility of 51 strains of *Pseudomonas pseudomallei* and 28 strains of *P. aeruginosa* to six tetracyclines, five aminoglycosides, four penicillins, four cephalosporins, two polypeptides, and nine miscellaneous antimicrobial agents. The strains of *P. pseudomallei* were provided by C. H. Zierdt, National Institutes of Health, Bethesda, Md. and R. J. Heckly, Naval Biological Laboratory, University of California, Berkeley, and identified by appropriate biochemical and serological tests (7). The strains of *P. aeruginosa* were isolated at this hospital.

Pure antibiotic powders were weighed and diluted to 2,560 µg/ml in sterile water and were further diluted in twofold steps with Mueller-Hinton broth (Difco). An 18-h broth culture of bacteria was diluted 10,000-fold with broth, and 0.5 ml was added to 0.5 ml of each antibiotic dilution; the final antibiotic concentrations ranged from 0.5 to 128 µg/ml. Incubation was at 35 C for 24 h, and the minimum inhibitory concentration (MIC) was read visually. Control strains of *Escherichia coli* and *Staphylococcus aureus* were included.

All of the tetracyclines except oxytetracycline were inhibitory for *P. pseudomallei* at relatively low concentrations (Fig. 1). Gentamicin and kanamycin were the most effective of the aminoglycosides against *P. pseudomallei*, with a broad range in MIC (Fig. 2). Figure 3 demonstrates susceptibility of the strains to novobiocin, chloramphenicol, rifampin, cycloserine, erythromycin, and ampicillin. With the method used, antimicrobial agents which were inactive against *P. pseudomallei* included sulfadiazine, the cephalosporins (cephalothin, cephaloridine, cephalaxin, and cefazolin), carbenicillin, penicillin G, oxacillin, dicloxacillin, polymyxin B, colistin, lincomycin, clindamycin, and vancomycin.

Colistin and polymyxin B were active against *P. aeruginosa* at 4 µg or less per ml, although they were inactive against *P. pseudomallei*. Conversely, novobiocin and cycloserine were entirely ineffective against *P. aeruginosa*, but were active over a broad range against *P. pseudomallei*.

We are grateful for the technical assistance of Elizabeth Schierl and for research grants from Eli Lilly and Company and the Veterans Administration.

LITERATURE CITED

