In Vitro Antifungal and Fungicidal Activities and Erythrocyte Toxicities of Cyclic Lipodepsinonapetides Produced by

Pseudomonas syringae pv. syringae†

KEVIN N. SORENSEN, KWANG-HEE KIM, AND JON Y. TAKEMOTO*

Department of Biology, Utah State University, Logan, Utah 84322

Received 10 September 1996/Accepted 23 September 1996

Recent increases in fungal infections, the few available antifungal drugs, and increasing fungal resistance to the available antifungal drugs have resulted in a broadening of the search for new antifungal agents. Strains of Pseudomonas syringae pv. syringae produce cyclic lipodepsinonapetides with antifungal activity. The in vitro antifungal and fungicidal activities of three cyclic lipodepsinonapetides (syringomycin E, syringotoxin B, and syringostatin A) against medically important isolates were evaluated by a standard broth microdilution susceptibility method. Erythrocyte toxicities were also evaluated. All three compounds showed broad antifungal activities and fungicidal actions against most of the fungi tested. Overall, the cyclic lipodepsinonapetides were more effective against yeasts than against the filamentous fungi. Syringomycin E and syringostatin A had very similar antifungal activities (2.5 to >40 μg/ml) and erythrocyte toxicities. Syringotoxin B was generally less active (0.8 to 20 μg/ml) than syringomycin E and syringostatin A against most fungi and was less toxic to erythrocytes. With opportunities for modification, these compounds are potential lead compounds for improved antifungal agents.

Fungal infections, once dismissed as a nuisance, are now a major health concern. Opportunistic fungal infections are increasingly important causes of morbidity and mortality in hospitalized patients. Patients at risk of developing invasive fungal infections are those with AIDS and other immunocompromised conditions, those receiving broad-spectrum antibiotics or cytotoxic therapy, and patients with intravascular catheters. Efforts to combat these infections are hampered by a lack of drugs, increasing resistance, a growing list of pathogens, and lagging research (26). A limited number of agents are available to treat systemic mycoses: mainly, amphotericin B (AmB), the triazoles, and flucytosine (22). Increases in the incidence of fungal infections have prompted a search for new antifungal agents with broad antifungal activities and fungicidal actions, a low likelihood of resistance development, and minimal toxicity.

The syringomycins, syringotoxins, and syringostatins were the first recognized cyclic lipodepsinonapetides (CLPs) produced by the plant bacterium Pseudomonas syringae pv. syringae. Individual P. syringae pv. syringae strains produce a single CLP group. For example, the syringomycins are produced by P. syringae pv. syringae B301D (24), SCI (12), and M1 (1); the syringotoxins are produced by certain citrus isolates (2, 11); and the syringostatins are produced by the lilac isolate, strain SY12 (16). Within each group, predominant forms are synthesized by the producing organism. These include syringomycin E (SR-E), syringotoxin B (ST-B), and syringostatin A (SS-A). All of the predominant forms inhibit the growth of yeasts such as Rhodotorula pilimanae and Saccharomyces cerevisiae (29). Another group of CLPs, the pseudomycins, produced by strain 16H, were characterized more recently (3), and its predominant form, pseudomycin A, has antifungal activities (13).

The CLPs are composed of a nonapeptide moiety with the C-terminal sequence dehydroaminoobutanoic acid–Asp(3-OH)–Thr(4-Cl) and an N-terminal Ser N-acetylated by a long-chain unbranched 3-hydroxy fatty acid and O-acetylated by the C-terminal carboxyl to form a macrolactone ring (Fig. 1). The five amino acids between the N-terminal Ser and the C-terminal tripeptide form the variable region of the peptide moiety. The CLPs target the fungal plasma membrane. SR-E alters several membrane functions such as membrane potential, protein phosphorylation, H+–ATPase activity, and cation transport fluxes (4, 5, 27, 31, 32). These effects are likely related to channel formation in the plasma membrane (10, 14). Recent molecular genetic studies with S. cerevisiae indicate that lipids are involved in the action of SR-E (8, 28).

Many strains of P. syringae pv. syringae produce CLPs; as a result, a variety of these metabolites occur in nature. This variety as well as the unique mechanism of action and potential for chemical modifications make the CLPs attractive lead compounds for development as clinically useful antifungal agents. In the study described here we evaluated the in vitro antifungal and fungicidal activities of SR-E, ST-B, and SS-A against a variety of clinical fungal isolates and their erythrocyte toxicities.

MATERIALS AND METHODS

Antifungal drugs. SR-E, ST-B, and SS-A were produced from cultures of P. syringae pv. syringae B301D, PS268, and SY12, respectively. Strains B301D and PS268 were grown in potato dextrose broth (31). Strain SY12 was grown in syringomycin minimal medium supplemented with 100 μM arbutin (A 4256; Sigma Chemical Co., St. Louis, Mo.) and 0.1% fructose (SRM 49) (19, 23). SR-E, ST-B, and SS-A were purified by high-performance liquid chromatography as described previously (5). Solubilized AmB containing 35% sodium deoxycholate (A 9528; Sigma Chemical Co.) and ketoconazole (K-1003; Sigma Chemical Co.) were used as test standards.

Cultures. Most of the fungal strains used in the tests were clinical isolates obtained from the Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, and the remaining isolates were American Type Culture Collection strains.

Medium. Liquid RPMI 1640 (RPMI) medium with 1-glutamine and without sodium bicarbonate (R-6504; Sigma Chemical Co.) buffered with 0.165 M MOPS (morpholinopropanesulfonic acid; 34.54 g/liter) was used for in vitro antifungal
VOL. 40, 1996 IN VITRO ACTIVITIES OF CYCLIC LIPODEPSINONAPEPTIDES 2711

drug concentration. Each well was inoculated with 100 µl of the corresponding 2×-concentrated fungal suspension. The wells of row 11 contained the inoculum, with drug-free medium used as a positive growth control, and the wells of row 12 contained uninoculated drug-free medium, which was used as a sterility control.

Incubation and scoring of MICs. All cultures were incubated without shaking at the temperature used during subculture. Incubation times were 48 h for Candida spp., S. cerevisiae, A. fumigatus, and Mucor spp.; 72 h for C. neoformans; and 7 days for Microsporum and Trichophyton spp. The growth in the microdilution wells was scored as follows: 0, no growth; 1, slightly hazy; 2, prominent decrease in turbidity; 3, slight reduction in turbidity; and 4, no reduction in turbidity compared with the growth control (drug-free) well. The MICs of SR-E, ST-B, SS-A, and Amb were defined as the lowest concentrations at which scores of 0 were observed. Score ranges from triple dilutions were recorded. The MIC of ketoconazole was described as the lowest concentrations at which a score of 2 was observed (9).

Minimum fungicidal concentrations. Minimum fungicidal concentrations were determined by subculturing 10 µl from each well with a drug concentration higher than the MIC, equal to the MIC, and the next drug concentration lower than the MIC on drug-free SDA when the MICs were read. Incubation temperatures were the same as those used for the MIC determinations. Incubation times were 24 h for Candida spp., S. cerevisiae, and Mucor spp.; 48 h for C. neoformans and A. fumigatus; and 7 days for Microsporum and Trichophyton spp. The minimum fungicidal concentration was the lowest concentration with three or fewer colonies per plate for the yeasts and no growth for the filamentous fungi (17). Scores range from triple dilutions were recorded.

Erythrocyte toxicity. Sheep erythrocyte hemolysis was used to assess the erythrocyte toxicities of the CLPs and Amb. Erythrocytes (MicroBioProducts, Inc., Salt Lake City, Utah) were washed four times with phosphate-buffered saline (PBS) by centrifugation at 1000 × g for 10 min and adjusted to 10⁶ cells per ml (7). Erythrocytes and a 2×-concentration of SR-E, ST-B, or SS-A in PBS were mixed in a 1:1 ratio, and the mixture was incubated at 37°C for 1 h. After incubation, the cells were pelleted by centrifugation at 800 × g for 10 min, and the supernatant was collected and the A₅₅₀ was determined. To verify that the compound did not affect the absorbance reading, the pellet was washed with PBS and lysed with distilled water, and the absorbance of the supernatant was determined after centrifugation. Distilled water and PBS were used as lysis and hemoglobin retention controls, respectively (21).

RESULTS

Antifungal activity. The CLPs showed a broad range of antifungal activity against the fungal isolates (Table 1). SR-E and SS-A had similar activity profiles (the exception was the activity profile against Microsporum spp.) and, overall, were more active than ST-B. One strain of C. neoformans did not follow this pattern and was more susceptible to ST-B than either SR-E or SS-A. This strain was very susceptible to ST-B (0.8 µg/ml) and was somewhat resistant to Amb (1.25 µg/ml). This differential susceptibility to ST-B also occurred with Candida tropicalis and Candida rugosa. One strain of C. tropicalis and one strain of C. rugosa showed resistance to Amb, but they were still susceptible to the CLPs. SR-E, SS-A, and ST-B were more active against yeasts (MIC range, 0.8 to 25 µg/ml) and were least active against the filamentous fungi (A. fumigatus, 5 to 40 µg/ml; Mucor spp., 6.25 to 100 µg/ml). In addition, ST-B was not as active against the dermatophytes Microsporum and Trichophyton spp. (MIC range, 25 to 200 µg/ml).

For the control organism, S. cerevisiae ATCC 36375, the MICs of Amb and ketoconazole were as expected (25). The MICs of Amb and ketoconazole, which were used as test standards, were within or close to the range of the expected MICs for the clinical isolates (20, 25). These clinical isolates showed a wide range of susceptibilities to Amb (MICs, ≤0.02 to 1.25 µg/ml) and ketoconazole (MICs, ≤0.02 to >10 µg/ml). The MICs of Amb and ketoconazole were generally lower than those of the CLPs. One strain of C. albicans showed resistance to MIC, 10 µg/ml) to ketoconazole, but it was susceptible to the other compounds tested.

Fungicidal activity. All three CLPs showed fungicidal activity against most of the organisms tested (Table 2). The minimum fungicidal concentrations were within twofold dilutions of the respective MICs except for those for Mucor spp. Amb,
which is known for its fungicidal action, also showed fungicidal activity against most of the strains tested. Ketoconazole, which is not considered fungicidal, showed fungicidal activity only against Candida krusei.

Erythrocyte toxicity. All three CLPs caused lysis of sheep erythrocytes and were more toxic than AmB to the erythrocytes (Fig. 2). ST-B was the least toxic of the three CLPs. The kinetics of hemolysis differed between the CLPs and AmB.

DISCUSSION

SR-E, ST-B, and SS-A all displayed fungicidal activities. Previously, a fourth *P. syringae* CLP, pseudomycin A, was also shown to be fungicidal, although the numbers and kinds of fungal organisms tested were limited in comparison with those tested in the present study (13). These activities probably reflect the natural role of these metabolites in plant environments as agents that promote bacterial survival against fungal competitors (29). The *P. syringae* pv. *syringae* CLPs are significantly more toxic to fungi than to plant tissues and bacteria (15).

There was some variability in susceptibility between fungal species. All three CLPs were more active against the yeasts than against the filamentous fungi. A similar difference was observed with pseudomycin A (13). This difference could be due to differences in the lipid compositions of the membranes of yeasts and filamentous fungi (30). Lipids are important for the action of SR-E (8, 28). Although it was inhibited by all four CLPs, *C. neoformans* was particularly susceptible to ST-B.

In addition to their antifungal properties, the CLPs caused erythrocyte lysis. As is well documented (6, 18), the widely used antifungal agent AmB also elicited erythrocyte lysis. The lytic activity profiles of the three CLPs parallel their antifungal activities. SR-E and SS-A were more active than ST-B. Conceivably, the more positive net charge of SR-E and SS-A imparted by three basic amino acids (ST-B has two basic amino acids) could account for this difference as well as ST-B's higher fungicidal activity against *C. neoformans*.

A significant finding was that AmB-resistant *C. rugosa* (6) was susceptible to the CLPs. This is likely due to differences in the mechanisms of action between AmB and the CLPs, although both agents bind membrane sterols and perturb membrane function (6, 8, 28). Chemical differences between the two classes of compounds probably account for their distinctive actions on membranes. The CLPs are water-soluble lipodepsi-

TABLE 1. Activities of SR-E, ST-B, SS-A, AmB, and ketoconazole against fungal isolates

<table>
<thead>
<tr>
<th>Organism (no. of isolates)</th>
<th>SR-E (μg/ml)</th>
<th>ST-B (μg/ml)</th>
<th>SS-A (μg/ml)</th>
<th>AmB (μg/ml)</th>
<th>Ketoconazole (Ktz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans (20)</td>
<td>2.5–10</td>
<td>3.2–12.5</td>
<td>2.5–10</td>
<td>≤0.04–0.3</td>
<td>≤0.02–0.10</td>
</tr>
<tr>
<td>Candida kefyr (1)</td>
<td>2.5</td>
<td>3.2</td>
<td>2.5</td>
<td>0.3</td>
<td>≤0.02</td>
</tr>
<tr>
<td>Candida krusei (2)</td>
<td>10</td>
<td>12.5–25</td>
<td>10</td>
<td>0.3–0.6</td>
<td>0.15</td>
</tr>
<tr>
<td>Candida lusitaniae (2)</td>
<td>2.5</td>
<td>6.25</td>
<td>2.5–10</td>
<td>0.3–1.25</td>
<td>≤0.02</td>
</tr>
<tr>
<td>Candida parapsilosis (2)</td>
<td>2.5–5</td>
<td>6.25–12.5</td>
<td>2.5–10</td>
<td>0.3–1.25</td>
<td>0.08–0.6</td>
</tr>
<tr>
<td>Candida rugosa (2)</td>
<td>≤5–20</td>
<td>6.25–25</td>
<td>2.5–10</td>
<td>0.08–1.25</td>
<td>0.04–0.6</td>
</tr>
<tr>
<td>Candida tropicalis (2)</td>
<td>2.5–5</td>
<td>3.2</td>
<td>2.5</td>
<td>0.3–1.25</td>
<td>0.08–0.6</td>
</tr>
<tr>
<td>Cryptococcus neoformans (14)</td>
<td>2.5–10</td>
<td>0.8–12.5</td>
<td>2.5–10</td>
<td>0.08–1.25</td>
<td>0.04–0.6</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (1)</td>
<td>2.5</td>
<td>6.25–25</td>
<td>2.5</td>
<td>0.3</td>
<td>0.15</td>
</tr>
<tr>
<td>Aspergillus fumigatus (16)</td>
<td>10–20</td>
<td>6.25–25</td>
<td>5–40</td>
<td>0.15–1.25</td>
<td>0.3–10</td>
</tr>
<tr>
<td>Mucor spp. (5)</td>
<td>10–40</td>
<td>6.25–100</td>
<td>10–40</td>
<td>≤0.02–0.15</td>
<td>0.6–10</td>
</tr>
<tr>
<td>Microsporum spp. (2)</td>
<td>6.25–12.5</td>
<td>25–200</td>
<td>2.5–10</td>
<td>0.04–0.3</td>
<td>0.8–1.6</td>
</tr>
<tr>
<td>Trichophyton spp. (3)</td>
<td>3.1–6.25</td>
<td>25–200</td>
<td>2.5–10</td>
<td>0.3–0.6</td>
<td>≤0.4–3.1</td>
</tr>
</tbody>
</table>

* Values were obtained from triplicate determinations.

TABLE 2. Fungicidal activities of SR-E, ST-B, SS-A, AmB, and ketoconazole against fungal isolates

<table>
<thead>
<tr>
<th>Organism (no. of isolates)</th>
<th>SR-E (μg/ml)</th>
<th>ST-B (μg/ml)</th>
<th>SS-A (μg/ml)</th>
<th>AmB (μg/ml)</th>
<th>Ketoconazole (Ktz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans (20)</td>
<td>2.5–10</td>
<td>3.2–12.5</td>
<td>2.5–10</td>
<td>0.15–0.3</td>
<td>0.3–10</td>
</tr>
<tr>
<td>Candida kefyr (1)</td>
<td>2.5</td>
<td>3.2</td>
<td>2.5</td>
<td>0.3</td>
<td>1.25</td>
</tr>
<tr>
<td>Candida krusei (2)</td>
<td>10</td>
<td>12.5–50</td>
<td>10–20</td>
<td>0.6</td>
<td>0.15</td>
</tr>
<tr>
<td>Candida lusitaniae (2)</td>
<td>2.5–5</td>
<td>6.25–12.5</td>
<td>5–10</td>
<td>0.6</td>
<td>≤0.02</td>
</tr>
<tr>
<td>Candida parapsilosis (2)</td>
<td>2.5–5</td>
<td>12.5–25</td>
<td>2.5–10</td>
<td>1.25</td>
<td>0.04</td>
</tr>
<tr>
<td>Candida rugosa (2)</td>
<td>10–20</td>
<td>6.25–50</td>
<td>10–20</td>
<td>0.6–1.25</td>
<td>≤0.02–0.08</td>
</tr>
<tr>
<td>Candida tropicalis (2)</td>
<td>5–12.5</td>
<td>5–12.5</td>
<td>5</td>
<td>0.6–1.25</td>
<td>2.5–10</td>
</tr>
<tr>
<td>Cryptococcus neoformans (14)</td>
<td>2.5–10</td>
<td>0.8–12.5</td>
<td>2.5–10</td>
<td>0.15–1.25</td>
<td>0.08–10</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (1)</td>
<td>2.5</td>
<td>12.5–25</td>
<td>5</td>
<td>1.25</td>
<td>0.6–1.25</td>
</tr>
<tr>
<td>Aspergillus fumigatus (16)</td>
<td>10–20</td>
<td>12.5–50</td>
<td>5–40</td>
<td>0.6–2.5</td>
<td>2.5–10</td>
</tr>
<tr>
<td>Mucor spp. (5)</td>
<td>20–40</td>
<td>25–100</td>
<td>40–100</td>
<td>≤0.02–0.3</td>
<td>2.5–10</td>
</tr>
<tr>
<td>Microsporum spp. (2)</td>
<td>6.25–12.5</td>
<td>25–200</td>
<td>5</td>
<td>0.8–0.3</td>
<td>2.5–10</td>
</tr>
<tr>
<td>Trichophyton spp. (3)</td>
<td>6.25–25</td>
<td>25–200</td>
<td>5</td>
<td>0.3–0.6</td>
<td>12.5–25</td>
</tr>
</tbody>
</table>

* Values were obtained from triplicate determinations.

MFC, minimum fungicidal concentration.
nonapeptides, whereas AmB is a cyclic polyene and is relatively more hydrophobic.

In conclusion, although they were not as active as AmB and ketoconazole in vitro, the P. syringae pv. syringae CLPs show potential as lead compounds for the development of effective antifungal agents. They are fungicidal against important human pathogenic yeasts, are water soluble, and have unique mechanisms of action. Several chemical sites could be modified in an attempt to enhance their antifungal activities and reduce their toxicities.

ACKNOWLEDGMENTS

We thank Stanley Allen (Utah State University) for the use of his antifungal testing facilities. This research was supported by the Willard L. Eccles Charitable Foundation and the Utah Agriculture Experiment Station (project 607).

REFERENCES