Letters to the Editor

A $\text{bla}_{\text{TEM-1b}}$-Derived TEM-6 β-Lactamase: a Case of Convergent Evolution

Since the first communication describing an organism that produces an enzyme capable of hydrolyzing extended-spectrum cephalosporins (5, 6), several outbreaks of Enterobacteriaceae resistant to oxyimino-β-lactams have been reported. In these cases, the adopted survival strategy of bacteria challenged by the introduction of aztreonam, cefotaxime, ceftazidime, and other oxyimino-β-lactams was to expand the β-lactamase spectrum of activity by the mutational alteration of bla-lactams. This allowed discrimination of $\text{bla}_{\text{TEM-1b}}$ from the previously described DNA sequence encoding TEM-6 (3), the gene encoding ceftazidimase activity was found to carry four silent mutations at nucleotides 175, 226, 436, and 604, locations which correspond to the $\text{bla}_{\text{TEM-1a}}$ (Tn2) gene and are known to allow discrimination of $\text{bla}_{\text{TEM-1a}}$ (Tn3) (2, 8). In contrast with the previously described DNA sequence encoding TEM-6 (3), the gene encoding ceftazidimase activity in our strain was more closely related to $\text{bla}_{\text{TEM-1b}}$ than to $\text{bla}_{\text{TEM-1a}}$, and its designations as $\text{bla}_{\text{TEM-6b}}$ are here proposed. These results strongly suggest that the enzyme reported in this work has evolved from a genetic lineage different from that of the previously described TEM-6 (3). The association of $\text{bla}_{\text{TEM-1a}}$ and $\text{bla}_{\text{TEM-1b}}$ with the transposons Tn1, Tn2, respectively, supports this view.

TABLE 1. Sequence differences between $\text{bla}_{\text{TEM-1a}}$, $\text{bla}_{\text{TEM-1b}}$, $\text{bla}_{\text{TEM-6a}}$, and $\text{bla}_{\text{TEM-6b}}$ genes

<table>
<thead>
<tr>
<th>Nucleotide no.</th>
<th>Nucleotide (amino acid) in: $\text{bla}_{\text{TEM-1a}}$ (from Tn2)</th>
<th>$\text{bla}_{\text{TEM-1b}}$ (from Tn2)</th>
<th>$\text{ bla}_{\text{TEM-6a}}$</th>
<th>$\text{bla}_{\text{TEM-6b}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>226</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>436</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>512</td>
<td>G (Glu-104)</td>
<td>T</td>
<td>G</td>
<td>A (Lys-104)</td>
</tr>
<tr>
<td>604</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>693</td>
<td>G (Arg-164)</td>
<td>G</td>
<td>A (His-164)</td>
<td>A</td>
</tr>
</tbody>
</table>

* Nucleotide numbering is according to the method of Sutcliffe (8).

The sequence reported in this paper is shown as $\text{bla}_{\text{TEM-6b}}$. Other data are taken from the works of Sutcliffe (8) for $\text{bla}_{\text{TEM-1a}}$, Goussard and Courvalin (2) for $\text{bla}_{\text{TEM-1b}}$, and Goussard et al. (3) for $\text{bla}_{\text{TEM-6}}$.

The amino acid is indicated for cases in which a point mutation leads to an amino acid substitution compared with the sequence of TEM-1. Numbering is according to the method of Ambler et al. (1).

REFERENCES

Luisa Vieira Peixê
J. C. F. Sousa
Department of Microbiology
Faculty of Pharmacy
University of Oporto
Oporto, Portugal

J.-C. Perez-Diaz
Fernando Baquero
Department of Microbiology
Hospital Ramón y Cajal
National Institute of Health (INSALUD)
28034 Madrid, Spain