Voriconazole (UK-109,496) Inhibits the Growth and Alters the Morphology of Fluconazole-Susceptible and -Resistant Candida Species

PAUL BELANGER,1 CYNTHIA C. NAST,2 RUTILIO FRATITI,1 HOMAYOON SANATI,1 AND MAHMOUD GHANNOUN1,4*

Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California 90509;1 Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California 90048;2 and Mycology Reference Laboratory, Center for Medical Mycology, University Hospitals of Cleveland,3 and Department of Dermatology, Case Western Reserve University,4 Cleveland, Ohio 44106-5028

Received 18 February 1997/Returned for modification 8 April 1997/Accepted 22 May 1997

The effects of voriconazole on the growth, ultrastructure, and leakage of cytoplasmic materials of Candida species were investigated. MIC data showed that voriconazole was more active than fluconazole. Exposure of yeast to voriconazole caused growth inhibition, cell wall thinning, and cell membrane degradation. Neither cell collapse nor release of cytoplasmic materials was observed in the treated cells.

Voriconazole is a new triazole derivative that shows efficacy against a wide spectrum of fungi (4), has high oral bioavailability, is well tolerated (1), and has low systemic clearance in mouse and rat (6). All the triazole antifungal agents belong to the class of cytochrome P-450-dependent 14α-sterol demethylase inhibitors (5). The aim of the present study was to determine the effects of voriconazole on the growth and morphology of Candida spp.

Antifungal agents. Voriconazole and fluconazole powders were obtained from Pfizer Central Research (Sandwich, England). These agents were dissolved in distilled water to obtain stock solutions of 0.320 and 1 mg/ml, respectively. Amphotericin B (Pharma-Tech Inc., Huntington, N.Y.) was also prepared as a 3.3-mg/ml stock solution in distilled water.

Organisms and culture conditions. A fluconazole-susceptible Candida albicans strain, OY-2-76, and fluconazole-resistant strains, OY-12-99, JL2052, and 2038, were isolated from patients with AIDS and oropharyngeal candidiasis. C. albicans 572-27, C. tropicalis 559-6.9, C. krusei 630-10, and C. glabrata 572-26 were isolated from nonneutropenic patients with hematogenously disseminated candidiasis. C. albicans ATCC 36082 was purchased from the American Type Culture Collection (Rockville, Md.). C. krusei, C. tropicalis, and C. parapsilosis were clinical blood isolates.

Determination of the MIC80 and MIC100. The MIC80, defined as the lowest drug concentration necessary to inhibit 80% of the growth compared with that of the control, was determined by a modification of the M27-T standard method (7). The main difference was the use of serial dilution to prepare the drug solutions. Antifungal agents were serially diluted in 96-well microtiter plates (Falcon, Lincoln Park, N.J.). The final volume of the antifungal agents was 100 µl/well, and the final drug concentration ranged between 0.03 and 64 µg/ml. The MIC80 were determined visually. The MIC100 was defined as the lowest concentration of antifungal agent at which no visible growth is observed.

Effect of voriconazole on candidal growth kinetics. C. albicans and C. krusei cells, adjusted to 107/ml, were used to inoculate 50 ml of RPMI 1640 medium containing different concentrations of antifungal agents (0.5×, 1.0×, and 2.0× the MIC80). The cultures were incubated at 35°C with shaking. Aliquots were removed at intervals and growth was measured spectrophotometrically as previously described (2).

Effect of voriconazole on leakage of cytoplasmic materials. Leakage of intracellular constituents, estimated by the absorbance of substances at 260 nm, under the influence of voriconazole or amphotericin B was monitored by the method of Ghanoum et al. (3).

SEM. C. albicans cells, 109/ml, were grown for 24 h at 35°C in the presence or absence of 1× the MIC80 of either fluconazole or voriconazole. We used concentrations equivalent to the MIC80 instead of the MIC100 because the former concentration results in 80% growth inhibition, allowing the studies to be conducted on the residual cells, while the latter concentration results in no growth. Cells were fixed and processed for preparation of thin sections using standard procedures. Cells were visualized under a SEM.

Effect of voriconazole on the morphology of Candida albicans and -Resistant Candida Species

<table>
<thead>
<tr>
<th>Organism</th>
<th>Isolate</th>
<th>Voriconazole (µg/ml) MIC80</th>
<th>Voriconazole (µg/ml) MIC100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>OY-2-76</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>ATCC 36082</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>JL2052</td>
<td>0.5</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>572-27</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OY-12-99</td>
<td>0.5</td>
<td>>64</td>
</tr>
<tr>
<td></td>
<td>2038</td>
<td>0.5</td>
<td>64</td>
</tr>
<tr>
<td>C. krusei</td>
<td>106</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>630-10</td>
<td>0.125</td>
<td>16</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>107</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>559-6.9</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>108</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>572-26</td>
<td>0.25</td>
<td>8</td>
</tr>
</tbody>
</table>

* Corresponding author. Mailing address: Mycology Reference Laboratory, Center for Medical Mycology, University Hospitals of Cleveland, 11100 Euclid Ave., Cleveland, OH 44106-5028. Phone: (216) 844-8580. Fax: (216) 844-1076. E-mail: mag3@po.cwru.edu.
scanning electron microscopy (SEM) by the method of Ghan-
noum et al. (3). Samples were viewed with an S-405A (Hitachi,
Tokyo, Japan) scanning electron microscope.

Transmission electron microscopy (TEM). An aliquot, 2×10^8 candidal cells, from cultures grown in the presence and absence of antifungal agents was pelleted and fixed in OsO$_4$ (0.1%, vol/vol). Cells were embedded in agar, cut into 1-mm3 cubes, and suspended in 1% uranyl acetate. The cubes were embedded in Epon by graded impregnation, and ultrathin sec-
tions were cut, counterstained with lead citrate and uranyl acetate, and observed under a JEOL-100B transmission elec-
tron microscope (3).

MICs. Table 1 summarizes the MIC data for voriconazole and fluconazole for various Candida species. In general, the former was more active than the latter in inhibiting the growth of these species. The MIC$_{50}$ of voriconazole were 8- to 130-fold lower than those of fluconazole (Table 1).

FIG. 1. Growth curves for shake cultures of C. albicans OY-2-76 (A), C. albicans OY-12-99 (B), and C. krusei 106 (C).

Effect of voriconazole on the growth kinetics of C. albicans and C. krusei. We examined the effects of various concentra-
tions of voriconazole on the growth rate of fluconazole-resis-
tant C. albicans (OY-12-99), fluconazole-susceptible C. albi-
cans, and C. krusei. Voriconazole showed a dose-dependent inhibitory effect on C. albicans as well as C. krusei. This was true at subinhibitory concentrations. However, since candidal growth was completely inhibited by concentrations of $\geq 1 \times$ the MIC$_{50}$ of voriconazole (Fig. 1), it is not possible to conclude that concentrations above the MIC produce greater inhibition.

Voriconazole at concentrations $\geq 1 \times$ the MIC$_{50}$ prolonged the lag phase of C. krusei by more than 8 h compared to the lag phase of untreated control cells (Fig. 1C), while subinhibitory concentrations of voriconazole ($0.5 \times$ the MIC$_{50}$) prolonged the lag phase of this yeast by 4 h. Similar findings were ob-
tained with fluconazole-susceptible and -resistant C. albicans (Fig. 1A and B).

Effect of voriconazole on the morphology of C. albicans. SEM analyses revealed that when C. albicans was exposed to $1 \times$ the MIC$_{50}$ of voriconazole, the morphology of the cells was altered. The yeast cells became swollen and blebs became ap-
parent on the cell surface (data not shown). Although cells were able to bud, in some instances they were unable to divide. No cell collapse or release of cytoplasmic debris was observed following the treatment of C. albicans with this triazole (data not shown).

TEM. As determined by comparison to the control (Fig. 2A), treatment of C. krusei with voriconazole affected the outer cell envelope significantly (Fig. 2C and D). Voriconazole-
treated C. krusei showed a pronounced separation of the cell wall and an intervening electron lucent zone between the cell wall and cytoplasm (Fig. 2C and D). Thinning of the cell wall and membrane degradation were evident (Fig. 2C). In con-
trast, fluconazole did not affect the morphology of this flucon-
azole-resistant organism, i.e., yeast cell morphology was similar to that of the untreated control (Fig. 2B).
In a separate study we have shown that the antifungal activity of voriconazole is due to the inhibition of the cytochrome P-450-dependent 14α-sterol demethylase, which is a key enzyme in the biosynthesis of ergosterol (9). The growth-inhibitory activities observed in this study were likely the result of ergosterol inhibition and amassing of methylated sterol derivatives (5).

Our TEM data, demonstrating cell wall thinning and detachment with widening of the outer cell walls of *C. krusei* and *C. albicans*, are consistent with adverse effects on chitin syntheses resulting from antifungal treatment (8). Our data showed that treating *C. albicans* cells with voriconazole did not result in the release of cytoplasmic materials, suggesting that voriconazole does not exert a direct membrane-damaging effect, in contrast to amphotericin B.

In conclusion, voriconazole possesses activity against a wide spectrum of both fluconazole-susceptible and -resistant *Candida* species, inhibiting the growth of these primary opportunistic pathogens and leading to deleterious morphological modifications. This new triazole is more effective than fluconazole in its antifungal activity and promises to be a highly efficacious agent in the treatment of infections due to *Candida*.

This work was supported in part by grant AI35097 from the National Institutes of Health and an unrestricted educational grant from Pfizer Pharmaceuticals Group, New York, N.Y.

REFERENCES

