Selection and Characterization of β-Lactam–β-Lactamase Inactivator-Resistant Mutants following PCR Mutagenesis of the TEM-1 β-Lactamase Gene

SERGEI B. VAKULENKO,1 BRUCE GERYK,1 LAKSHMI P. KOTRA,2 SHAHRIAR MOBASHERY,2 AND STEPHEN A. LERNER1,3*

Departments of Medicine1 and Biochemistry and Molecular Biology,2 Wayne State University
School of Medicine, Detroit, Michigan 48201, and Department of Chemistry,
Wayne State University, Detroit, Michigan 482021

Received 27 October 1997/Returned for modification 9 February 1998/Accepted 16 April 1998

Mechanism-based inactivators of β-lactamases are used to overcome the resistance of clinical pathogens to β-lactam antibiotics. This strategy can itself be overcome by mutations of the β-lactamase that compromise the effectiveness of their inactivation. We used PCR mutagenesis of the TEM-1 β-lactamase gene and sequenced the genes of 20 mutants that grew in the presence of ampicillin-clavulanate. Eleven different mutant genes from these strains contained from 1 to 10 mutations. Each had a replacement of one of the four residues, Met69, Ser130, Arg244, and Asn276, whose substitutions by themselves had been shown to result in inhibitor resistance. None of the mutant enzymes with multiple amino acid substitutions generated in this study conferred higher levels of resistance to ampicillin alone or ampicillin with β-lactamase inactivators (clavulanate, sulbactam, or tazobactam) than the levels of resistance conferred by the corresponding single-mutant enzymes. Of the four enzymes with just a single mutation (Ser130Gly, Arg244Cys, Arg244Ser, or Asn276Asp), the Asn276Asp β-lactamase conferred a wild-type level of ampicillin resistance and the highest levels of resistance to ampicillin in the presence of inhibitors. Site-directed random mutagenesis of the Ser130 codon yielded no other mutant with replacement of Ser130 besides Ser130Gly that produced ampicillin-clavulanate resistance. Thus, despite PCR mutagenesis we found no new mutant TEM β-lactamase that conferred a level of resistance to ampicillin plus inactivators greater than that produced by the single-mutation enzymes that have already been reported in clinical isolates. Although this is reassuring, one must caution that other combinations of multiple mutations might still produce unexpected resistance.

The hydrolytic activities of β-lactamases that inactivate β-lactam antibiotics are the principal mechanism of acquired resistance to these compounds in gram-negative bacterial pathogens such as Escherichia coli and Klebsiella pneumoniae. One strategy that has been used successfully to circumvent resistance mediated by class A β-lactamases in these and other bacteria has been the development of mechanism-based inactivators of these enzymes, such as clavulanic acid, sulbactam, and tazobactam, to protect the β-lactam antibiotics with which they are coadministered from inactivation. Inevitably, the use of such drug combinations has selected mutant derivatives of the TEM and SHV families of class A β-lactamases that have become relatively resistant to inactivation by mechanism-based inactivators and thereby confer resistance to the combination of β-lactam–β-lactamase inactivator combinations (3, 5, 10, 19, 23, 29, 31). Although in some cases such resistance appears to have resulted from hyperproduction of wild-type β-lactamase (20, 24, 25), it has been demonstrated that many inhibitor-resistant clinical isolates and laboratory mutants that display such resistance have emerged as the result of single or multiple mutations in the structural genes for their β-lactamases (2, 7, 11, 28). Amino acid replacements at positions 69, 130, 244, and 276 of TEM or SHV β-lactamases (residues are numbered according to Ambler et al. [1]) have been recognized as major contributors to clinically significant levels of resistance to β-lactamase inhibitors. Although critical substitutions at positions 69, 244, and 276 have been reported by themselves, generally they occur in various clinical isolates in combination with another critical substitution or with mutational replacements at other positions. Therefore, the specific effects of these mutations on the MICs of β-lactam antibiotics in combination with inhibitors have been difficult to compare among different strains.

We sought to explore the range of mutations that might yet arise to confer resistance of the TEM-1 β-lactamase to inactivation by clavulanate, using mutagenesis of its gene and selection of resistance to the combination of ampicillin and clavulanate in vitro. Since our mutant genes would all be in the same genetic environment (host, strain, plasmid, and promoter), we intended to compare the effects of the mutations that we would find on the susceptibilities to various β-lactam antibiotics, alone and in combination with clavulanate and other β-lactamase inactivators.

MATERIALS AND METHODS

Antibiotics. Ampicillin, kanamycin, cephalothin, cephaloridine, and ceftriaxone were obtained from Sigma. Ceftazidime was provided by Glaxo, cefepime and aztreonam were provided by Bristol-Myers Squibb, clavulanic acid and aztreonam were provided by SmithKline Beecham, sulbactam was provided by Pfizer, and tazobactam was provided by Wyeth-Ayerst.

Antibiotic and inhibitor susceptibility testing. Stock solutions of antibiotics and β-lactamase inhibitors were freshly prepared from the powders. The MICs for each strain were determined at least three times in Mueller-Hinton broth by a two-fold dilution method in microtiter plates. For assessment of the susceptibilities of the transformants’ β-lactamases to inhibition, we determined the MICs of ampicillin in the presence of designated fixed concentrations of the inhibitors.
RESULTS

Mutations in TEM-1 β-lactamase. After PCR mutagenesis of the TEM-1 β-lactamase gene, we selected clones resistant to ampicillin in combination with clavulanate. In order to confirm this phenotype, we retransformed E. coli JM83 with DNA from individual colonies and determined the MICs of ampicillin (23). The sites of these mutations are shown in the preacylation complex of the clavulanate in the active site of the TEM-1 β-lactamase: version 2.0, DNA Sequencing Kit (United States Biochemicals) and a set of custom-made internal primers.

Molecular modeling. The crystal structure for Zn-nitrosochromobenzyl clavulanate (CLAVBB10) was obtained from the Cambridge Structural Database; version 5.13, and the clavulanate structure was extracted from it for use in molecular modeling. The crystal structure of the native TEM-1 β-lactamase (15) was used in this study. Both the preacylation complex and the immediate acyl-enzyme intermediate for clavulanate with the TEM-1 β-lactamase were constructed, and the energies of the complexes were minimized by using the AMBER force field by the protocol described previously (8).

Table 1. Types of mutant β-lactamases selected by growth of transformants in the presence of ampicillin plus clavulanate.

<table>
<thead>
<tr>
<th>Mutant type</th>
<th>Amino acid substitutions for the following amino acids of the wild-type TEM-1 β-lactamase:</th>
<th>Silent mutation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N52Y M60L M69L S130G K111 K192 H153 S192 T195 L201 G238 R244 T272 N276</td>
<td>T272A A42A T281T</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>R9R Q206Q</td>
</tr>
<tr>
<td>3</td>
<td>A42G S130G T195A G238S</td>
<td>T265T</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>R244C L73L</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>R244C R9R K34K L49L R61R Q88Q K111K</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>R9R K34K L49L R61R G87G I260I</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>R65R P67P I260I</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>N276D</td>
</tr>
</tbody>
</table>

a The wild type is TEM-1.

b Amino acids are indicated by conventional single-letter nomenclature.

c Mutations in the base sequence of the gene that do not alter the amino acid sequence of the enzyme.

d The boldface font indicates sites at which mutations have previously been reported to confer resistance to β-lactam–clavulanic acid combinations.
replacements of Ser130 besides glycine could produce ampicillin-clavulanate resistance, we performed site-directed random mutagenesis at this position. After selection of mutants on plates containing 5 μg of clavulanate per ml together with 50, 100, or 200 μg of ampicillin per ml, we determined the nucleotide sequence of the codon corresponding to residue 130 in the β-lactamase gene of 10 individual isolates. Each contained a mutation resulting in the replacement of Ser130 by glycine. Several additional replacements of Ser130 were detected among transformants grown without selection on ampicillin-clavulanate. These mutations resulted in the substitution of leucine, cysteine, tyrosine, or valine for Ser130.

Phenotypic characterization of mutants. The MICs of ampicillin, clavulanate, sulbactam, and tazobactam alone and also the MICs of ampicillin in combination with these inhibitors at fixed concentrations are presented in Table 2. Replacement of Asn276 by aspartate (type 11) had no effect on the MIC of ampicillin. Two other replacements, Met69Leu and Arg244Ser (types 1 and 9, respectively), resulted in only a twofold reduction in the level of resistance to ampicillin, although interpre-

FIG. 1. TEM-1 β-lactamase with clavulanic acid bound in the active site. The side chains of the residues Met69, Ser130, Arg244, and Asn276 are shown as a ball and stick representation; Clav, clavulanic acid. The figure was prepared by using the MOLSCRIPT program (17).

![Diagram of TEM-1 β-lactamase with clavulanic acid bound](image)

TABLE 2. MICs of ampicillin, β-lactam inhibitors, and their combinations conferred by the TEM-1 β-lactamase and various types of mutant derivatives for E. coli JM83

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>2</td>
<td>1</td>
<td>NG</td>
<td>256</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TEM-1</td>
<td>16,000</td>
<td>32</td>
<td>250</td>
<td>125</td>
<td>64</td>
<td>16,000</td>
<td>8,000</td>
<td>4,000</td>
<td>256</td>
<td>500</td>
<td>125</td>
<td>32</td>
<td>64</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8,000</td>
<td>32</td>
<td>1,000</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>4,000</td>
<td>2,000</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1,000</td>
<td>32</td>
<td>1,000</td>
<td>1,000</td>
<td>500</td>
<td>250</td>
<td>64</td>
<td>NG</td>
<td>256</td>
<td>125</td>
<td>64</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>32</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>32</td>
<td>256</td>
<td>125</td>
<td>64</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,000</td>
<td>32</td>
<td>2,000</td>
<td>1,000</td>
<td>500</td>
<td>125</td>
<td>500</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>32</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,000</td>
<td>32</td>
<td>2,000</td>
<td>1,000</td>
<td>500</td>
<td>125</td>
<td>32</td>
<td>500</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>32</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>64</td>
<td>32</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2,000</td>
<td>32</td>
<td>2,000</td>
<td>1,000</td>
<td>500</td>
<td>125</td>
<td>32</td>
<td>500</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8,000</td>
<td>32</td>
<td>4,000</td>
<td>2,000</td>
<td>1,000</td>
<td>250</td>
<td>32</td>
<td>2,000</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2,000</td>
<td>32</td>
<td>2,000</td>
<td>1,000</td>
<td>500</td>
<td>125</td>
<td>32</td>
<td>500</td>
<td>125</td>
<td>NG</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>16,000</td>
<td>32</td>
<td>4,000</td>
<td>2,000</td>
<td>1,000</td>
<td>250</td>
<td>64</td>
<td>16,000</td>
<td>16,000</td>
<td>8,000</td>
<td>256</td>
<td>64</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Abbreviations: Ap, ampicillin; Cl, clavulanate; Sb, sulbactam; Tb, tazobactam.
b The numbers indicate the fixed concentration (in micrograms per milliliter) of the indicated inhibitor in combination with ampicillin for determination of ampicillin MICs.
c ‡ TEM-1 JM83 without a plasmid.
d NG, no growth in the presence of the lowest concentration of ampicillin tested (0.06 μg/ml for E. coli JM83 and 8 μg/ml for the transformants bearing a β-lactamase).
tation of the consequences of the Met69Leu mutation is complicated by the presence of two additional mutations. The most profound decrease in ampicillin resistance (to an MIC of 1,000 μg/ml) resulting from a single amino acid replacement was noticed for the Ser130Gly mutant (type 3). The presence of additional mutations in combination with Ser130Gly, Arg244Cys, or Arg244Ser (types 4, 7, and 10, respectively) resulted in a decline of ampicillin resistance to less than that observed with the Ser130Gly, Arg244Cys, or Arg244Ser mutation alone.

Neither the TEM-1 β-lactamase nor any of the mutant derivatives produced a level of resistance to clavulanate or tazobactam alone greater than that of the plasmidless host strain. In contrast, both TEM-1 and the Asn276Asp mutant enzyme consistently conferred a twofold rise in the sulbactam MIC over that for E. coli JM83. The other mutant enzymes had no effect on the susceptibility of the strain to this β-lactamase inactivator.

For most of the mutant strains, the addition of 1 or 2 μg of clavulanate per ml had little or no effect on the MICs of ampicillin, and even with 5 μg/ml, the MICs declined only two- to fourfold for all but types 1 (32-fold), 9 (8-fold), and 11 (16-fold). In contrast, in the presence of only 1 μg of clavulanate per ml, there was a marked (64-fold) decline in the MIC of ampicillin for the isolate producing wild-type (TEM-1) β-lactamase. For most mutants, sulbactam behaved similarly to clavulanate, gradually reducing the MICs of ampicillin as the concentration of inhibitor used in the combination was increased. On the other hand, the strains producing the TEM-1 and Asn276Asp mutant β-lactamases maintained the original high level of resistance to ampicillin with a sulbactam concentration of 10 μg/ml; even with sulbactam at 20 μg/ml, the MICs of ampicillin were still 4,000 and 8,000 μg/ml for the two strains, respectively. It should be noted that only for these two strains was there a consistent twofold increase in the MIC of sulbactam alone that for the background strain, so the sulbactam concentration of 20 μg/ml had little inhibitory effect on those strains. Also for the strain producing the type 1 mutant enzyme, sulbactam had a relatively poor influence on the MIC of ampicillin, even though this enzyme had no detectable effect on the MIC of sulbactam alone.

From the observed MICs, tazobactam appeared to be an efficient inhibitor of the TEM-1 enzyme and reduced the MICs of ampicillin for most of the mutants even more efficiently than clavulanate. The type 11 mutant strain remained highly resistant to ampicillin (2,000 μg/ml) in the presence of 5 μg of tazobactam per ml. However, in the presence of higher tazobactam concentrations the MIC of ampicillin for the type 11 mutant strain dropped drastically.

The presence of additional amino acid replacements besides those at residue 130 or 244 (mutant types 4, 6, 7, 8, and 10) in no case improved the level of ampicillin resistance that was conferred by the corresponding single-mutation enzyme, type 3, 5, or 9. Likewise, none of the additional substitutions improved the level of resistance to ampicillin plus any inhibitor over that produced by the corresponding enzymes with just the single replacements.

We also determined the MICs of several cephalosporins and aztreonam for isolates harboring the 11 types of mutant β-lactamases and compared them with the MICs for the plasmidless host E. coli JM83 and the strain producing the TEM-1 β-lactamase (Table 3). All strains were uniformly susceptible to ceftriaxone (MIC, 0.03 μg/ml) and aztreonam (MIC, 0.06 μg/ml). Only TEM-1 and the Asn276Asp mutant enzyme conferred resistance to cefhaloridine and cefalothin; for strains producing the other mutant enzymes the MICs of these cephalosporins were at background levels. The resistance to cephaloridine conferred by the strains with the TEM-1 and Asn276Asp mutant β-lactamases was especially high (64-fold increase over the background MIC). For the same two strains there were reproducible two- and fourfold increases in the MICs of ceftazidime, respectively.

Since the finding of a Ser130Gly mutant had not yet been reported to confer resistance to β-lactam–inhibitor combinations and the resistant mutants that we selected had only the glycine replacement at that position, we also determined the MICs for strains with several other amino acid substitutions at residue 130 in the TEM β-lactamase. In contrast to the results with the Ser130Gly mutant, replacement of Ser130 by leucine, cysteine, tyrosine, or valine drastically reduced the activity of the enzyme against β-lactam substrates (e.g., MICs of ampicillin, <32 μg/ml); hence, the effect of the inactivators on β-lactam resistance could not be assessed.

DISCUSSION

Mutations at only four sites in the TEM β-lactamase have been implicated in resistance to inactivation by β-lactamase inactivators. In an attempt to identify other sites where mutations would produce similar levels of resistance, we exploited the inherent production of random replicative errors by Taq polymerase in the course of PCR. By regulating the fidelity of Taq polymerase with various PCR conditions, we hoped to be able to introduce either single or multiple mutations throughout the TEM-1 β-lactamase gene that would produce resistance to β-lactam–inhibitor combinations. In fact, after selection of mutants on ampicillin-clavulanate and sequencing of the gene from 20 of them, we found 11 different types of mutants containing from 1 to 10 mutations. Even more impressive is the fact that among the first seven mutants obtained after PCR under nonmutagenic conditions we found mutations at all of the four important residues where mutations have been reported to produce resistance to inactivators. Four mutants had just a single amino acid substitution: Ser130Gly, Arg224Cys, Arg244Ser, or Asn276Asp. In fact, these are the only mutations at these residues that have been reported to produce significant levels of resistance to β-lactam–inhibitor combinations. Thus, our results indicate the power and random nature of PCR mutagenesis, so one would expect under appropriate conditions to obtain any mutation in the gene of interest.
We designed our search for mutants resistant to β-lactam–inhibitor combinations to use a high-copy-number plasmid (pUC19 derivative) that would be expected to amplify small effects of mutations on MICs because of hyperproduction of the mutant enzyme. Hyperproduction of wild-type β-lactamase has been reported as one of the mechanisms responsible for resistance to β-lactam–inhibitor combinations (20, 24, 25). In fact, this may account for the relatively high β-lactam MICs that we observed for the strain producing the TEM-1 β-lactamase from our plasmid construct.

With our construct we were able to select by growth on ampicillin-clavulanate mutants with amino acid replacements at each of the sites identified in inhibitor-resistant β-lactamases. This enabled us to compare the effects of these mutations on the MICs of different β-lactam antibiotics, β-lactamase inhibitors, and combinations of these drugs for the E. coli JM83 transformants harboring the wild-type or mutant TEM β-lactamase genes on the same multicopy plasmid and under the control of the same promoter.

The models for the preacylation complex and the immediate acyl-enzyme intermediate for clavulanate in the active site of the TEM-1 enzyme were generated to gain insight into the nature of the effect of mutations with reference to the interactions with the inactivator (for a discussion of mechanisms of action for clavulanate and sulbactam, consult references 12 and 13). These two models are shown in Fig. 2A and B, respectively. The sites of mutations associated with the resistance phenotype are clearly indicated. Specifically, modeling was intended to show whether these residues actually make contact with the clavulanate species or whether the effects are indirect. The contribution of each of these mutated sites to understanding of the chemistry of clavulanate is described in the following paragraphs.

We obtained two distinct mutants with the Met69Leu mutation. Unfortunately, each of our mutants also has other mutations, including one or two additional amino acid substitutions, so the relative contribution of each mutation to the observed susceptibility patterns is unclear. The first report of inhibitor-resistant TEM-1 β-lactamases described laboratory mutants in which Met69 was replaced by leucine, isoleucine, or valine (22). Since that time, clinical isolates in which Met69 was replaced by each of these branched-chain aliphatic amino acids have been reported (27, 31). It has been proposed that such replacements alter the structure of the oxyanion pocket of the β-lactamase, which impairs the binding of β-lactams in the active site (4, 16). The binding of small β-lactams, such as clavulanate, sulbactam, and tazobactam, is especially sensitive to such perturbation, since they lack other substituents at the C-6 position which would provide additional anchoring in the active site.

The Ser130Gly mutant that was resistant to ampicillin-clavulanate had not been reported at the time that we encountered it, so we pursued an investigation by site-directed random mutagenesis at that site. Our results suggest that other amino acids besides glycine at residue 130 are unlikely to produce β-lactam–β-lactamase inhibitor resistance. Recently, a mutant derivative of the SHV β-lactamase which confers β-lactam–inhibitor resistance was reported to contain Ser130Gly, but two additional amino acid substitutions were also present (23), thus complicating the analysis of the effect of the Ser130Gly replacement alone. Ser130 participates in multiple interactions, including potentially a proton shuttle in catalysis, stabilization of the active site, and anchoring of β-lactams to the active site (12–14, 18, 20, 21). Therefore, although we were able to show that the Ser130Gly mutation by itself was sufficient to confer β-lactam–inhibitor resistance, it is difficult to dissect out the precise reason why the replacement of Ser130 by just glycine resulted in such resistance while preserving significant residual resistance to ampicillin. In fact, the other replacements of Ser130 dramatically compromised resistance to ampicillin. However, we had predicted that Ser130 was the site of covalent modification by clavulanate (13), a fact which has recently been verified experimentally (6). Therefore, the Ser130Gly mutation would be incapable of irreversible modi-

FIG. 2. (A) Preacylation complex of TEM-1 β-lactamase and clavulanic acid. (B) The active site is shown for the regions within the vicinity of the acyl-enzyme intermediate of TEM-1 β-lactamase and clavulanic acid. Clavulanic acid (Clav), water molecules, and Ser70 are shown as ball and stick representations. The arrow indicates the B3 strand, which forms a portion of the active-site surface. The figure was prepared by using the MOLSCRIPT program (17).
fication by clavulanate. Furthermore, we have shown previously (12, 13) and also in the present report (Fig. 2) that Ser130 makes hydrogen bonds to the carboxyterminal of the enzyme inactivator. The absence of the side chain of serine in the glycine mutant would deprive the complex of this hydrogen bonding interaction; hence, the recognition of the inactivator by the enzyme should be impaired.

Among our resistant mutants of TEM-1 β-lactamase we found Arg244Cys and Arg244Ser as single replacements. The level of resistance to ampicillin in the Arg244Ser mutant hardly declined from that of the wild type, whereas the residual level of resistance in the Arg244Cys mutant was reduced eightfold. The profile of declining MICs of ampicillin in the presence of increasing concentrations of clavulanate and sulbactam was similar for these two mutants and for the Ser130Gly mutant. With sulbactam, there was a sharper drop-off in the ampicillin MICs for the Arg244Ser mutant. In addition to the single substitutions with serine or cysteine, four other mutant types also had other amino acid replacements and silent mutations. Both cysteine and serine substitutions at position 244 in TEM-1 β-lactamase have been reported in laboratory mutants and clinical isolates that were resistant to combinations of β-lactams and β-lactamase inactivators (2, 13, 29, 30). It has been proposed that Arg244 anchors the carboxylate of β-lactams in the active site (30). A water molecule coordinated to Arg244 (Wat399; according to the numbering method of Jelsch et al. [15] for crystallographic water molecules) serves as the source of a critical proton for the inactivation process with clavulanate (13). The side chains of cysteine or serine in the mutant enzymes are unable to retain this water molecule in the active site, so they are resistant to inactivation by clavulanate. Furthermore, similarly to the role of Ser130, Arg244 also makes important hydrogen bonds to the carboxylate of the inactivators (12, 13) (Fig. 2). The mutant enzymes possessing shorter side chains at this position would not have the benefit of this important hydrogen bond to the inactivators and would, as a consequence, show reduced affinities toward these molecules.

Substitution of Asn276 by aspartate has not been reported by itself in a TEM-1-producing clinical isolate resistant to β-lactam–inhibitor combinations, but it has been found in a number of mutants that also include replacements of Met69 by leucine, isoleucine, or valine (11, 31). However, when 15 different substitutions of Asn276 were introduced alone into the TEM-1 β-lactamase, only the aspartate mutant conferred significant resistance to such combinations (26). Among our resistant mutants, we found only the aspartate replacement of Asn276. Enzymologic study of such a mutant revealed marked elevation of the K_i of clavulanate (26). Mutations at position 276 would alter the intimate interaction between this residue and Arg244 (Fig. 2). Such a tampering in the structural integrity of the enzyme in this important region would reposition the side chain of Arg244 and also would affect the location of Wat399. Both of these effects would have deleterious consequences for binding of the enzyme to the inactivators.

In contrast to the other mutants with a single amino acid substitution, the Asn276Asp mutation in TEM-1 β-lactamase did not alter the MICs of ampicillin, cephalothin, or cephaloridine. Although the wild-type TEM-1 β-lactamase conferred no resistance to clavulanate or tazobactam, its production from our multicycopy vector consistently raised the MIC of sulbactam twofold. Likewise, the Asn276Asp mutant conferred a similar level of resistance to sulbactam. This doubling of the sulbactam MIC significantly raised the levels of resistance of these strains to combinations of ampicillin and sulbactam. The Asn276Asp mutant also exhibited a somewhat unusual pattern of resistance to ampicillin in combination with tazobactam. In the presence of tazobactam at 5 µg/ml, the MIC of ampicillin was still 2,000 µg/ml, whereas in the presence of tazobactam at 10 µg/ml, the ampicillin MIC was already diminished to 64 µg/ml, in the range of those for all of the other mutants. It has been shown that β-lactamases exhibit reversible inactivation with tazobactam, and the extent of inactivation depends on the type of enzyme and the amount of inhibitor present in combination with the β-lactam antibiotic (9). Therefore, it would appear that a minimum level of tazobactam greater than 5 µg/ml is required to block the large amounts of the Asn276Asp mutant enzyme produced from the multicopy plasmid in this strain.

A major strategy for overcoming the problem of high-level resistance to β-lactams produced by β-lactamases has been to develop effective β-lactamase inactivators, which are coadministered with the β-lactam antibiotics which they protect. The emergence of inactivator-resistant enzymes is a serious threat to this approach. The TEM-1 β-lactamase is a very plastic enzyme and is capable of tolerating numerous mutations that enhance its activity or broaden its spectrum. Fourteen inhibitor-resistant TEM-1 β-lactamases produced by clinical isolates have been reported so far. Although some of these enzymes had multiple mutations, replacements of only four individual residues were unambiguously shown to produce resistance of the enzyme to inactivation by drugs such as clavulanate. We used a powerful mutagenic tool to generate as broad a range of mutants as possible from which we could select for resistance to ampicillin-clavulanate to probe the possibility that other mutants might yet emerge in clinical strains. It is thus noteworthy that we found no new single-mutation enzymes that have not yet been recognized to confer significant levels of resistance in clinical isolates. Furthermore, none of the other mutant enzymes with additional replacements conferred greater levels of resistance to ampicillin plus inactivators than those conferred by these single-mutation enzymes. Although this is reassuring, one must caution that other combinations of multiple mutations might still produce unexpected resistance to clavulanate. Moreover, selection of mutants with other β-lactamase inactivators besides clavulanate might also have yielded other mutations that confer inactivator resistance.

ACKNOWLEDGMENT

This work was supported by Public Health Service grant AI33170 from the National Institutes of Health.

REFERENCES

