Sodium Stibogluconate (Pentostam) Potentiates Oxidant Production in Murine Visceral Leishmaniasis and in Human Blood

SAMIRA RAIS,1,2 AXEL PERIANIN,3 MONIQUE LENOIR,7 ABDERRAHIM SADAK,4 DANIELE RIVOLLET,1 MURIEL PAUL,5 AND MICHELE DENIAU1*

Service de Parasitologie, Faculté de Médecine,1 and Service de Pharmacie,5 CHU Henri Mondor, 94010 Créteil, and CNRS UPRES-A 8068, Pharmacologie, Hôpital Cochin, 75014 Paris,5 France, and Laboratoire de Parasitologie, Faculté des Sciences, Rabat,4 and Laboratoire de Biochimie, Faculté des Sciences Ben M’Sik, Casablanca,2 Morocco

Received 7 February 2000/Returned for modification 5 April 2000/Accepted 7 June 2000

Sodium stibogluconate (Sbb), a leishmanicidal drug, was studied for its in vivo effect on the formation of reactive oxygen species (ROS), assessed by chemiluminescence (CL) in the whole blood of mice infected with Leishmania infantum. Stimulation of ROS formation induced ex vivo by zymosan particles or the protein kinase C activator phorbol myristate acetate (PMA) was reduced by approximately 25% (P < 0.05) after infection of mice. Treatment of infected mice with Sbb (50 to 400 mg/kg of body weight) enhanced the blood CL induced by zymosan and PMA (47 to 96%, P < 0.01). The drug potentiation effect also occurred in uninfected mice. In vitro treatment of normal human blood with Sbb (1, 10, or 100 μg/ml) for 1 h primed the CL response to PMA (29 to 54%). The priming effect of Sbb was also observed on the production of superoxide by isolated polymorphonuclear leukocytes stimulated either by PMA and zymosan or by the chemoattractants N-formyl-Met-Leu-Phe and platelet-activating factor. These data provide the first evidence of priming of the phagocyte respiratory burst by Sbb. This novel property of Sbb may contribute to the drug’s leishmanicidal effect.
tional Organizations of Medical Sciences (Geneva, Switzerland) in 1985, were followed during all procedures.

PMN preparation. Human venous blood, heparinized at 10 U/ml, was obtained from healthy volunteers. PMN were isolated by a first-step sedimentation of whole blood on 2% dextran T500 followed by centrifugation of the granulocyte-rich supernatant on a cushion of a mixture of Ficoll and Hypaque (Eurobio, Les Ulis, France) as previously described (26). The purified PMN (97%) were subjected to hypotonic lysis, washed, and resuspended in Hank’s balanced salt solution (HBSS) (pH 7.4) containing 10 mM HEPES.

CL assay. CL, i.e., light that is generated from singlet oxygen and other molecules, has been used largely to study the respiratory burst of phagocytes (1, 18, 29). The in vitro CL response of whole blood (18, 29) was measured at 37°C using a Bio-orbit or PicoLite luminometer, both from Packard. Briefly, the reaction mixture consisted of 200 μl of heparinized blood diluted at 1:10 in 100 μl of HBSS containing 10 μM luminol (18). Light emission was induced by two phagocyte activators, i.e., opsonized zymosan (0.5 mg/ml) and a direct activator of protein kinase C (PKC), PMA (1 μg/ml). The CL response was recorded at 26-s intervals for 15 min, and the peak value expressed in millivolts was used to assess differences between the groups. The CL response by purified PMN was studied with suspensions of 10^6 cells under conditions described in the figure legends. Results represent the peak PMN CL and are expressed in either millivolts or counts per minute.

Superoxide production. Production of superoxide anion by purified PMN was studied by continuous monitoring of cytochrome c reduction (25) using a Perkin-Elmer Lambda 40 spectrophotometer equipped with thermostated (37°C) cuvette holder and magnetic stirrer. Suspensions of 2 × 10^6 PMN in 2 ml of HBSS were treated in the absence (control) or presence of Sbb for 1 h at 37°C before stimulation with various agents known to trigger respiratory burst through different signaling pathways, including PMN, zymosan particles, and two chemotrac­tants, fMLP and PAF (7). Results are presented as nanomoles of superoxide generated by 10^6 PMN.

Statistics. Differences in the effects of Sbb in vivo were assessed using the Student’s t test. Differences of the in vitro drug effects were assessed using Student’s t test. P values of <0.05 were considered statistically significant.

RESULTS

ROS production in a murine model of leishmaniasis and in vivo effect of Sbb

The influence of leishmaniasis on ROS formation was determined in vitro by comparing the CL responses of the whole blood of infected and uninfected mice. The peak CL response (mean ± standard deviation) induced by PMA or zymosan in the blood of uninfected animals was, respectively, 0.69 ± 0.04 or 1.44 ± 0.8 mV, whereas that induced in the blood of infected mice was significantly reduced (P <0.05), by 22 or 27%, respectively (i.e., 0.54 ± 0.04 or 1.06 ± 0.04 mM). Treatment of infected animals with various doses of Sbb (50, 100, 200, or 400 mg/kg) induced a strongly leishmanicidal effect, as determined by the Staub er count (28): the ED_{50} and ED_{90} were approximately 38 and 164 mg of Sbb/kg, respectively.

The in vivo effect of Sbb on the blood CL response of *Leishmania*-infected animals was evaluated next (Fig. 1). The CL response induced by PMA in the blood of animals treated with 50, 100, 200, or 400 mg of Sbb/kg was significantly enhanced by 46, 57, 98, or 114%, respectively, relative to that of the control (0.54 ± 0.04 mV). A similar priming effect of Sbb (P, <0.01) was also observed in the blood of animals treated with 50, 100, 200, or 400 mg of Sbb/kg after opsonized zymosan stimulation of the CL response: 31, 41, 64, or 89%, respectively, compared to the control (1.06 ± 0.04 mV). The CL response of the blood of uninfected mice measured in the absence of stimuli was approximately 0.8 mV and was not modified by treatment with Sbb (data not shown). The potentiating in vivo effect of Sbb on the CL response might be due to the decreased parasite burden or to an independent mechanism. To further clarify this point, the in vivo effect of Sbb on the CL response of the blood from uninfected mice was also studied. Treatment of mice with 100, 200, or 400 mg of Sbb/kg also primed (P, <0.01) the blood CL response induced by both PMA and zymosan (Fig. 2). However, a significant drug effect was observed with the highest Sbb concentrations (P, <0.05).

To examine whether the potentiated CL response may result from the possible interaction of trace amounts of Sbb in the circulating blood of treated mice with the luminol assay, we investigated whether the presence of Sbb in the assays influenced the CL response. For this purpose, blood was collected from uninfected mice and was treated in vitro with either PMA (1 μg/ml) or opsonized zymosan (0.5 mg/ml). Values are the means ± standard errors of the means of the peak CL obtained with at least six animals.

![Fig. 1. In vivo effect of Sbb on CL response of blood from *L. infantum*-infected mice.](http://aac.asm.org/)

![Fig. 2. In vivo effect of Sbb on CL response of blood from uninfected mice.](http://aac.asm.org/)
In vitro effect of Sbb on the respiratory burst of phagocytes from healthy volunteers. To further investigate the mode of action of Sbb, we analyzed the in vitro effects of Sbb on the CL response of human blood. Human blood was preferred to that of mice since it is suitable for the purification of large numbers of leukocytes for further investigation of drug effects in vitro. Among leukocytes, PMN were chosen for further study of the Sbb effect, since this cell type is a suitable model for clarifying the mode of action of drugs (11, 13, 24, 26). In addition, PMN were reported to ingest *L. major* in vivo and to control the parasite load (21). Treatment of human blood or purified PMN in vitro for 1 h in the presence of 1, 10, or 100 μg of Sbb/ml significantly (*P*, <0.01) enhanced the CL response induced by PMA (Fig. 3). The optimal potentiation of the CL response of PMN was obtained in the presence of 10 μg of Sbb/ml, whereas a higher concentration of the drug was less effective. The time course of cell treatment with 10 μg of Sbb/ml indicated that a significant drug potentiating effect required at least 30 min of PMN treatment.

The luminol-enhanced CL response of stimulated PMN results from the combined stimulation of the production of ROS (respiratory burst) and the release of granular content (exocytosis). Peroxidases released during this process catalyze the oxidation of luminol in the presence of hydrogen peroxide and halide, a reaction in which light emission is enhanced. We determined whether the priming effects of Sbb were due to enhancement of the activity of the respiratory burst oxidase by measuring the generation of superoxide anion with the cytochrome c assay. To gain insight into the mode of action of Sbb, the PMN respiratory burst was also stimulated by various agents known to trigger different intracellular signaling pathways. Treatment of PMN with Sbb (0.1, 10, or 100 μg/ml) for 1 h induced a concentration-dependent increase in the production of superoxide induced by PMA (Fig. 4). The priming effect of Sbb (*P* <0.05) was also observed in superoxide production induced by zymosan particles (Fig. 4) and fMLP (Fig. 5), although the latter two stimuli were less potent than PMA and zymosan.

DISCUSSION

This study provides evidence that Sbb has an in vivo protective effect against the down-regulation of the phagocyte respiratory burst mediated by *L. infantum*. This property is associated with Sbb’s ability to induce a dose-dependent priming of ROS formation in the whole blood of infected and uninfected
The biochemical mechanism of this priming remains to be elucidated. However, the data suggest that at least two main processes may be involved. First, it has been previously shown that Sbb interacts directly with Leishmania and inhibits its survival (6). The decrease in parasite burden may consequently reduce the down-regulation of phagocyte killing activity, which has been shown to be mediated in part by Leishmania antigens (2). A second mechanism is suggested by our data. The enhancement of the oxygen-dependent defense activity of phagocytes in uninfected mice by Sbb indicates that Sbb may directly or indirectly alter the state of phagocyte activation, independent of the parasite burden. This novel property of Sbb is further supported by the observation that low concentrations of the drug (1 to 10 μg/ml) induce increases in ROS formation in normal human blood and by isolated PMN in vitro. This potentiation also affects the production of superoxide, indicating that Sbb enhanced the activity of NADPH oxidase, the enzyme that generates superoxide.

Interestingly, the Sbb priming effect occurred at low drug concentrations similar to those measured in the plasma of patients (5, 9). Furthermore, priming improves the PMN response induced by various stimuli (fMLP, PAF, and opsonized zymosan) known to stimulate specific membrane receptors which are also present on monocytes and macrophages. This observation suggests that the drug may also potentiate receptor-mediated immune responses. In this context, a third mechanism may be also considered; Sbb may enhance the production of cytokines such as interleukin 3 and gamma interferon, which have been shown to induce antileishmanial activity via an enhancement of the oxidative capacity of macrophages (16). Although the relative contributions of the mechanisms proposed above remain to be quantified, the potentiation of ROS formation described here suggests that Sbb may enhance the killing activities of phagocytes and the intracellular suppression of L. infantum. However, it should be noted that increased ROS formation may also have deleterious effects, particularly in some pathologies. In AIDS, ROS production by PMN was found to enhance virus replication in patient monocytes (15). Consequently, one may speculate that the enhancement of viral replication might further decrease the cell-mediated immune response. This may contribute in part to the failure of Sbb treatment in AIDS patients.

The mechanism of PMN priming by Sbb is not known. This priming affects the respiratory burst induced by proinflammatory agents, such as PAF or fMLP, and thus mimics the effects of other drugs that were previously described for human PMN (11, 25). One of these, staurosporine, is a bacterial alkaloid known as a potent inhibitor of PKC. This agent also stimulates G protein (19) and phospholipase D (PLD) activity (19, 24) and primes fMLP-induced PLD activity in a manner that is correlated with the respiratory burst of PMN (26). Another agent, okadaic acid, an inhibitor of protein phosphatase 2A, also primes PLD activity (13) and respiratory bursts (12). In contrast to the latter two agents, Sbb also potentiated the PMN respiratory burst induced by PMA, a direct activator of PKC. This suggests that Sbb may enhance PKC activity or downstream signaling events, such as phosphorylation of a major oxidase component, p47-phox, as previously shown with staurosporine (10). Furthermore, the observation that Sbb has a greater priming effect on the rate of induction than on the total amount of superoxide induced by fMLP suggests that the biochemical alteration induced by Sbb may preferentially affect early events of the signaling cascade involved in the production of second messengers by chemotactant receptors. Among these, PLD activity may play a major role since it was shown to be correlated with the primed respiratory burst of PMN (26). Whether Sbb enhances the generation of ROS and nitric oxide by macrophages is a major point to be studied in order to understand the mechanism of Sbb’s leishmanicidal effect.

In conclusion, Sbb induced a protective in vivo effect against the down-regulation of phagocyte defense activity mediated by Leishmania. This novel property appears to be mediated in part by a direct interaction of Sbb with phagocytes, resulting in a priming of their ability to generate ROS in response to various stimuli. This effect may contribute to the drug’s leishmanicidal property.

ACKNOWLEDGMENTS

This work is support by Sidaction (Fondation pour la Recherche Médicale).

We thank the staff of the blood bank of the St. Vincent Hospital for providing blood samples.

REFERENCES