Prevalence of Macrolide Resistance Genes in Clinical Isolates of the *Streptococcus anginosus (“S. milleri”)* Group

JAN A. JACOBS,†,* GILLES J. VAN BAAR,‡ NANCY H. H. J. LONDON,† JEROEN H. T. TJHIE,† LEO M. SCHOOLS,§ AND ELLEN E. STOBBERINGH†

Department of Medical Microbiology, University Hospital Maastricht, Maastricht, and Research Laboratory for Infectious Diseases, National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands

Received 19 October 2000/Returned for modification 28 November 2000/Accepted 17 May 2001

Twenty-two unrelated erythromycin-resistant anginosus group strains (3.2% resistance rate) were assessed for mechanisms of resistance. *Streptococcus anginosus* accounted for 16 of the 22 isolates. Fifteen isolates harbored the *erm*(B) gene. The *erm*(TR) and *mef*(E) genes were carried by two isolates each. In three isolates, none of these resistance genes was detected by PCR.

The antimicrobial susceptibility patterns of the *Streptococcus anginosus* group (AG) of streptococci, previously designated the “*Streptococcus milleri*” group, vary according to geography (7, 11, 16), and periodic review of local susceptibility data has been recommended (7, 11). Some authors have reported increasing resistance rates of AG isolates against macrolides and clindamycin (7, 16, 25).

Macrolides, lincosamides, and streptogramins are grouped together as MLS antibiotics. Two MLS antibiotic resistance phenotypes are recognized in streptococci (20, 23, 24). The phenotypic expression of MLS resistance may be inducible (MLS Bi phenotype) or constitutive (MLS Bc phenotype). The other phenotype, designated the M phenotype, causes resistance to 14- and 15-membered macrolides only and is caused by an active drug efflux system (23) encoded by the *mef* (macrolide efflux) and *mef*(E) genes (23), and *erm*(B) genes (12). The *erm*(TR) and *mef*(E) genes were carried by two isolates each. In three isolates, none of these resistance genes was detected by PCR.

For resistance genotype determination, DNAs of the isolates were amplified with primers specific to the *erm*(A), *erm*(B), and *erm*(C) genes (12), the *mef*(A) and *mef*(E) genes (23), and the *erm*(TR) gene (14). For all PCR amplifications, PCR buffer containing 1.5 mM MgCl₂ was used. Nucleotide triphosphates were used at a concentration of 0.04 mM, and 0.01 U of *Taq* polymerase was added to each reaction mixture. Amplifications were performed in a Perkin-Elmer Cetus GeneAmp PCR System 9600 (Perkin-Elmer, Norwalk, Conn.), and the PCR protocols used were those described previously (12, 14, 23). The PCR products generated by the *mef*(A)-*mef*(E) and *erm*(TR) primers were directly sequenced by a fluorescent-sequencing method (Amersham Pharmacia Biotechnology, Piscataway, N.J.). To assess the clonal identities of the isolates, typing was performed by amplified fragment length polymorphism (AFLP) analysis as previously described (22).

By the agar dilution method, 11 (3.2%) of 342 isolates were resistant to erythromycin. This resistance rate was slightly higher than the 2.6% resistance rate previously found in our laboratory (11). It was comparable to data reported from Argentina (2) but lower than those reported from Spain (14.3 and 17.7%) and the United States (13.6%) (7, 16, 25).

The 11 previously identified erythromycin-resistant isolates (11) were added to the present ones, resulting in a total of 22 isolates included for further characterization. Table 1 lists the resistance phenotypes and genotypes matched by species. *S. anginosus* accounted for the largest proportion of erythromycin-resistant isolates (*P* = 0.015). Other studies of smaller numbers of isolates demonstrated only slight differences among the three AG species in terms of MLS resistance rates (2, 7, 16, 25).

For 15 isolates assigned to the MLS Bc phenotype, the MICs...
of erythromycin were >256 mg/liter and for 1 isolate the MIC was 8 mg/liter. For four MLS$_{Bc}$ phenotype isolates, the MICs of erythromycin were 1, 3, 12, and 256 mg/liter, respectively, and these isolates showed inducible resistance to both clindamycin and tetracycline. For all MLS$_{Bi}$ phenotype isolates, the MICs of clindamycin were >256 mg/liter.

Among the erythromycin-resistant isolates analyzed in this study, the erm(TR) gene was predominant, which is in agreement with a previous study (4). The results of the sequence analysis showed that the PCR products generated by the mef(A)-mef(E) and erm(TR) primers were identical to the mef(E) and erm(TR) genes, respectively. mef genes have been demonstrated in a limited number of isolates of the viridans group, including one AG isolate (1, 19). mef genes have accounted for the rapid emergence of erythromycin resistance in $S.$ pyogenes and $S.$ pneumoniae in several countries (6, 21), and therefore their presence in AG isolates is of concern.

The erm(TR) gene has been found in $S.$ pyogenes (5) and in large-colony group G streptococci (13), but, to our knowledge, it has not been demonstrated in AG isolates before. Three isolates assigned to the MLS$_{Bc}$ phenotype did not react with any of the primers chosen in the PCR amplification. We are conducting further studies to reveal the genetic mechanism of this resistance.

The numbers of isolates recovered from various body sites were as follows: abdomen, eight; genital tract, five; head and neck region, five; thoracic cavity, two; blood, one. For one isolate, complete clinical data were not available. AFLP analysis showed that all of the isolates had unique genotypes. There was no relationship between the Lancefield group, pattern of hemolysis, or site of isolation of the isolates on the one hand and the resistance genotype on the other hand.

In conclusion, this study demonstrated the presence of different erythromycin resistance genes, including the $erm(A)$, $erm(TR)$, and mef(E) genes, in a series of clinical AG isolates. The present data highlight the need for periodic surveillance of the rates of the antimicrobial resistance and its mechanism in these streptococci.

We gratefully acknowledge the following colleagues for providing control strains: H. Seppälä, National Public Health Institute, Turku, Finland, for $S.$ pyogenes strains KOT R44 and KOT R59 (MLS$_{Bc}$ phenotype), KUO R21 and ROV R367 (MLS$_{Bc}$ phenotype), and KOT R45 and KOT R46 (M phenotype); S. Schwartz, Institut für Klinietzersuchung der Bundesforschungsanstalt für Landwirtschaft, Celle, Germany, for $S.$ aureus control strains $erm(A)$ and $erm(C)$ genes; L. Jønnessen, Danish Veterinary Laboratory, Copenhagen, Denmark, for $E.$ faecalis HJ2-2-Tn1545 [control strain for $erm(B)$ detection]; J. Sutcliffe, Department of Infectious Diseases, Pfizer Central Research, Groton, Conn., for $S.$ pyogenes 02C1064 and $S.$ pneumoniae 021175 [for mef(A)-mef(E) gene detection]. We thank C. Schot, E. Cornelissen, and K. Spee for technical assistance.

REFERENCES

