Alkyl-Lysophospholipid Resistance in Multidrug-Resistant
Leishmania tropica and Chemosensitization by a Novel
P-Glycoprotein-Like Transporter Modulator

JOSÉ M. PÉREZ-VICTORIA,1 F. JAVIER PÉREZ-VICTORIA,1 ADRIANA PARODI-TALICE,1 IGNACIO A. JIMÉNEZ,2 ANGEL G. RAVELO,2 SANTIAGO CASTANYS,1 AND FRANCISCO GAMARRO1,3

Instituto de Parasitología y Biomedicina “López-Neyra,” Consejo Superior de Investigaciones Científicas, Granada,1 and Instituto Universitario de Bio-Órganica “Antonio González,” Universidad de La Laguna, La Laguna, Tenerife,2 Spain

Received 27 February 2001/Returned for modification 12 April 2001/Accepted 5 June 2001

Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in *Leishmania* spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the *Leishmania* P-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) *Leishmania tropica* line overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resistance to daunomycin in the MDR line. (iv) We have found a new inhibitor of this transporter, the sesquiterpene C-3, that completely sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation than the wild-type line of bodipy-C₂-PC, a fluorescent analogue of phosphatidylcholine that has a structure resembling that of edelfosine. Also, C-3 significantly increases the accumulation of the fluorescent analogue to levels similar to those of wild-type parasites. The involvement of the *Leishmania* P-glycoprotein-like transporter in resistance to drugs used in the treatment of leishmaniasis also supports the importance of developing new specific inhibitors of this ABC transporter.

Protozoan parasites are responsible for some of the most important and prevalent diseases of humans and domestic animals, threatening the lives of nearly one-quarter of the human population. World Health Organization statistics show that, with a 42-fold increase in the last 15 years, leishmaniasis has become the second worldwide cause of death among these diseases (20). In the absence of effective vaccines and vector control, chemotherapy still plays a critical role in the control of the infection. The recommended standard drugs for treatment are still the pentavalent antimonial drugs Pentostam and Glucantime, despite the requirement of long courses of parenteral administration (1) and increasing levels of resistance (13). Drug resistance has indeed emerged as a major problem in treating the disease. In fact, more than 50% of the cases of visceral leishmaniasis in India are resistant to Glucantime (44), due to the emergence of *Leishmania donovani* lines resistant to antimonials (27). Although alternative drugs or drug formulations have been proved to be effective (e.g., amphotericin B liposomes for visceral leishmaniasis and paramomycin ointment for cutaneous leishmaniasis), they present several drawbacks, such as their very high cost and their scant availability (1). On the other hand, alkyl-lysophospholipids (ALP) such as miltefosine and edelfosine, originally developed as anticancer drugs, have shown a significant antiproliferative activity against *Leishmania* spp., *Trypanosoma cruzi*, and *Trypanosoma brucei* parasites in vitro and in vivo in experimental models (7–9, 26, 40, 47). They only scarcely produce side effects at therapeutic doses, and no drug resistance has ever been described. Miltefosine is the first oral drug that has proved to be highly effective against visceral leishmaniasis in India, including antimony-resistant cases (23), and an antimony-resistant patient with human immunodeficiency virus-*Leishmania* coinfection (45). The leishmanicidal and trypompanicidal activities of these compounds have been related to perturbation of the alkyl-lipid metabolism and the biosynthesis of alkyl-anchoered glycolipids and glycoproteins (28), as well as damage to the flagellar membrane (39). Recently, it has been suggested that both miltefosine and edelfosine appear to induce a perturbation of ether-lipid (alkyl-phospholipids) remodeling through the inhibition of glycosomal located alkyl-specific acylcoenzyme A acyltransferase (29).

Resistance to ALP has already been observed in cancer cell lines induced in the laboratory (12, 15, 41, 51); besides, distinct cell types display different intrinsic sensitivities to them (43, 46, 50). Several mechanisms probably involved in such differences have been described: reduced drug uptake (46), faster drug metabolism (14), bcl-2 overexpression (15), and increased cholesterol content of plasma membranes (10), among others. It has recently been shown that P-glycoprotein (Pgp)-overex-
pressing cells transfected with the mdr1 gene are cross-resistant to the ALP ilmofosine (21). Pgp belongs to the ATP-binding cassette (ABC) superfamily of transporters (19). It is an ATP-dependent pump that exports a wide range of hydrophobic drugs from the cell, decreasing their intracellular concentration and preventing their cytotoxic activity, thus conferring a multidrug resistance (MDR) phenotype during the treatment of cancer. Pgp can be inhibited in vitro by compounds called reversal agents, that overcome the MDR phenotype. However, the role of Pgp in ilmofosine resistance could be indirect, being associated with Pgp-mediated alterations in membrane lipids (21). Besides, other Pgp-overexpressing MDR lines show a similar susceptibility to ALP as parental cells (16, 34, 35, 49).

An MDR phenotype due to Pgp-like transporters has also been characterized in Leishmania spp. (5, 6, 18), where the pump confers a cross-resistance to daunomycin, vinblastine, puromycin, and adriamycin. However, this entire spectrum of drugs is not used clinically as antileishmanial agents. Classical modulators of mammalian Pgp such as verapamil and cyclosporine poorly revert the MDR phenotype in Leishmania (5, 18, 32). Conversely, we have recently described that natural compounds such as sesquiterpenes and flavonoids, as well as hemisynthetic derivatives, constitute promising new classes of modulators due to their ability to increase drug accumulation and reverse the MDR phenotype in Leishmania parasites (31–33).

An understanding of the resistance mechanisms to ALP in Leishmania spp. can help us find strategies to avoid or overcome the problem before the widespread use of miltefosine for the treatment of leishmaniasis results in the appearance of clinical cases of resistance. In order to address this possibility, we have studied the ability of a Pgp-like transporter from Leishmania tropica to confer resistance to ALP miltefosine and edelfosine, as well as the ability of a new natural Pgp modulator to overcome this resistance phenotype.

MATERIALS AND METHODS

Chemical compounds. Daunomycin was purchased from Pharmacia-Spain (Barcelona, Spain). Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycerol-3-phosphocholine; ET-18-OCH3, methyl-PAF) was obtained from Bachem AG (Bubendorf, Switzerland). Miltefosine (hexadecylphosphocholine) was obtained from Sigma Chemical (St. Louis, Mo.). Sesquiterpene C-3 (9α,12α,15-triacetoxy-4β-hydroxydihydro-β-agarofuran) (see Fig. 3A) was isolated from Myriococcus canariensis, as previously described (17). Bodipy-C5-PC (1-hexadecanoyl-2-[4,4-difluoro-5,7-dimethyl-4-bora-3a,4a diaza-s-indacene-3-pentanoyl]-sn-glycerol-3-phosphocholine) was obtained from Molecular Probes Europe BV (Leiden, the Netherlands).

Parasite culture and in vitro experiments. Promastigote forms of a cloned L. tropica LRC strain (wild-type) were grown at 28°C in RPMI 1640 modified medium (Gibco) (22), supplemented with 20% heat-inactivated fetal bovine serum (FBS) (Gibco). A derivative line highly resistant to daunomycin at a 50% inhibitory concentration (IC50 [concentration of drug that decreases the rate of cell growth by 50%]) of 272 μM versus 2.6 μM in the wild-type line, was continuously maintained in the presence of 150 μM daunomycin, a concentration that does not produce any significant toxic effect. This resistant line was cloned from the MDR line DNMM-R150 previously described (5) and presented an MDR phenotype similar to that described in tumor cells, with a profile of cross-resistance to several drugs due to an overexpressed Pgp-like transporter. A revertant line was obtained by maintenance of the resistant line in drug-free medium for 45 days, in order to decrease Pgp overexpression and daunomycin resistance to wild-type levels (IC50 9 μM), as previously described (5). The profile of cross-resistance of wild-type, resistant, and revertant parasites to ALP was ascertained as follows. Before each experiment, the MDR line was maintained in the absence of daunomycin during two passages (4 days).

RESULTS

Resistance to ALP in an MDR L. tropica line overexpressing a Pgp-like transporter. The cytotoxicities of the ALP miltefosine (Fig. 1A) and edelfosine (Fig. 1B) were assayed with an L. tropica line (wild type) and its MDR derivative line overexpressing a Pgp-like transporter. Edelfosine showed a slightly higher cytotoxic effect than miltefosine in the wild-type line, with IC50s of 16.2 and 24.7 μM, respectively (Fig. 1A and B). The MDR line was cross-resistant to these drugs, with IC50s of 227.3 μM for miltefosine (Fig. 1A) and 115.2 μM for edelfosine (Fig. 1B), exhibiting resistance indices of 9.2- and 7.1-fold.
respectively. We also studied the correlation of Pgp expression with the resistance to ALP. For that purpose, the resistant line was incubated for 45 days in the absence of daunomycin to decrease Pgp-like transporter overexpression and daunomycin resistance to levels similar to those of wild-type parasites, as described in Materials and Methods.
previously described (5) and demonstrated by indirect immunofluorescence (Fig. 1C) and Western blotting (not shown). The results showed that this revertant line displayed an ALP sensitivity similar to that found in the wild-type line (Fig. 1A and B).

Sensitization of the MDR Leishmania line to daunomycin by ALP. The MDR line, normally maintained in the presence of daunomycin (150 μM), shows a significant resistant index to daunomycin due to the activity of the Pgp-like transporter. To further establish the role of Pgp in the ALP resistance, we studied the ability of these ether-lipid analogs to sensitize the MDR parasites to daunomycin, as detailed in Materials and Methods. The results showed that both miltefosine (Fig. 2A) and, especially, edelfosine (Fig. 2B) were able to significantly revert the daunomycin resistance at 100 and 60 μM, respectively. Both ALP concentrations had limited toxic effects on the MDR line (Fig. 2A and B).

Reversion of Pgp-mediated ALP resistance by inhibition of the transporter. Contrary to conventional Pgp modulators, hemisynthetic flavonoids (32, 33) and natural sesquiterpenes (31) are able to efficiently overcome the daunomycin resistance phenotype in the MDR Leishmania line by increasing drug accumulation. If the Pgp-like transporter is responsible for ALP resistance, these modulators should be able to sensitize the MDR line to these antileishmanial drugs. Consequently, we studied the effect of a new natural sesquiterpene, called C-3 (Fig. 3A), that had previously shown a higher reversal effect of the MDR phenotype in mammalian cells overexpressing human Pgp than other sesquiterpenes previously analyzed (unpublished data). First, we studied the ability of C-3 to revert Pgp-mediated daunomycin resistance in the MDR Leishmania line. Figure 3A shows that C-3 efficiently overcame daunomycin resistance at low concentrations (10 μM), without any significant toxicity in the wild-type line. This reversal effect is due to an increase in daunomycin accumulation in the MDR line, as shown by flow cytometry assays (Fig. 3B). Thus, when a mixture of both lines was incubated for 1 h with 8 μM daunomycin, we observed the two expected peaks of fluorescence distribution (Fig. 3B, top panel) as a consequence of the lower drug accumulation in resistant (left peak) with respect to wild-type parasites (right peak). Treatment with 50 μM C-3 (Fig. 3B, bottom panel) resulted in a significant shift of the fluorescence peak corresponding to resistant parasites to the right, indicating an increase in daunomycin accumulation in these cells, and therefore, only one peak was observed in the mixed population. Afterwards, we studied the ability of this new Pgp inhibitor to overcome ALP resistance in the MDR line. Figure 4 shows that 10 μM C-3 almost completely sensitized the resistance of the Leishmania MDR line to miltefosine (Fig. 4A) and edelfosine (Fig. 4B), with no significant effect on wild-type parasites. This C-3 concentration did not produce
any toxic effect on the resistant line in the absence of daunomycin (not shown). Treatment of MDR parasites with 10 μM C-3 over 72 h did not decrease the level of the Pgp-like transporter overexpression, as determined by Western blot analysis (data not shown).

Accumulation of bodipy-C₅-PC in wild-type and MDR *Leishmania* lines. The accumulation of bodipy-C₅-PC, a fluorescent analogue of edelfosine (46), was studied in both *Leishmania* cell lines (Fig. 5A). Flow cytometry analysis revealed that after 1 h of incubation with 3 μM bodipy-C₅-PC, the accumulation of the fluorescent analogue was significantly lower in the MDR line than in the wild-type line. Interestingly, in the presence of 10 and especially 40 μM C-3, bodipy-C₅-PC accumulation in the MDR line was significantly increased to the levels of wild-type parasites (Fig. 5B), suggesting that the differences found in both cell lines were due to the Pgp activity.

DISCUSSION

Our main novel results concern the description in *Leishmania* of an in vitro case of resistance to ALP such as miltefosine and edelfosine, the most promising antileishmanial agents. We have also found a molecule probably involved in such resistance, which is the Pgp-like transporter, demonstrating the possibility of efficiently overcoming ALP resistance by using a new Pgp inhibitor.

In order to rationally design reversal agents that render the trypanosomatids sensitive to these new chemotherapeutic...
compounds, it is important to know the possible mechanisms involved in ALP resistance. We have found several indications that suggest the involvement of an ABC multidrug transporter in ALP resistance. (i) First of all, an MDR *Leishmania* line overexpressing a Pgp-like transporter displays a significant cross-resistance to ALP. (ii) Reduced Pgp expression in the resistant line maintained in the absence of the drug inducer of the MDR phenotype correlated with a significant decrease in ALP resistance. (iii) ALP were able to modulate the resistance to daunomycin produced by Pgp in the MDR line. (iv) We have observed that the sesquiterpene C-3, a new modulator of Pgp-mediated MDR phenotype described in this study, sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation of bodipy-C5-PC, a fluorescent analogue of phosphatidylcholine the structure of which resembles that of edelfosine (46) with respect to the wild-type line. As expected, if the Pgp-like transporter were involved in the resistance to ALP, the sesquiterpene C-3 produces a dose-dependent increase in bodipy-C5-PC accumulation in the resistant line to levels similar to those observed in the wild type. In agreement with these results, it is well established that mammalian Pgps and other ABC transporters are involved in phospholipid translocation, including that of phosphatidylcholine (2, 3, 38, 48). It is therefore tempting to suggest that the mechanism of ALP resistance by the *Leishmania* multidrug transporter could be related to the flipfase mechanism of phosphatidylcholine transport by mammalian Pgps. Besides, as recently described (12), human Pgp is involved in the transport of the platelet-activating factor (PAF), an analogue of edelfosine (also called methyl-PAF) that could therefore be an endogenous substrate of the pump (12). In addition, human Pgp overexpression in different cell lines, including *mdrl*-transfected cells, induces a cross-resistance to ilmofosine (21), another ALP with a similar structure to edelfosine. However, contrary to our results, the resistance to ilmofosine in the cells described above cannot be reverted with Pgp inhibitors, nor can ilmofosine modulate their MDR phenotype. Besides, ilmofosine neither inhibits the Pgp labeling with azidopine nor affects its ATPase activity. The authors conclude that ilmofosine is not a Pgp substrate and suggest that the resistance could be mediated by modifications of the plasma membrane permeability induced by Pgp (21). Further cell lines selected for resistance to miltefosine overexpress the *mdrl* gene, but this resistance could not be reverted with verapamil either (15). On the other hand, other cell lines with a MDR phenotype and overexpressing mammalian Pgps do not show a cross-resistance profile to ALP (16, 34, 35, 49). These contradictory results could be partly explained by the significant differences between human and *Leishmania* Pgp-like transporters, which share 37% identity at the amino acid level (5). In fact, classical modulators of MDR mammalian cells such as verapamil and cyclosporine do not efficiently revert the Pgp-like transporter-mediated *Leishmania* MDR phenotype (5, 18, 32). The possibility of overcoming ALP resistance by coadministration of modulators, such as the sesquiterpene C-3 described here, is of great significance for future clinical applications. Related sesquiterpenes are indeed known to reverse the Pgp-mediated MDR phenotype of *Leishmania* spp. (31) and, interestingly, also in mammalian cell lines (24, 25; unpublished results).

In spite of the evidence presented above, we cannot rule out some other possible mechanisms involved in the resistance to ALP in the MDR *Leishmania* line. In tumor cells, how ALP resistance could be determined by decreased uptake and accumulation (14, 41, 46, 51) or faster metabolism (14) of these drugs has been described, but little is known about what influences this different behavior. On the other hand, the results of Fleer and coworkers (14) have also shown that miltefosine-resistant cells could incorporate and tolerate a larger amount of the drug than the parental cells, indicating that mechanisms other than decreased drug accumulation are involved in this resistance. In addition, Pgp-like transporter overexpression could indirectly contribute to the ALP resistance, as suggested by Hoffman and coworkers (21), by inducing changes in the physical properties of the cell membrane. Indeed, *mdrl* gene transfections are described to alter the fluidity of the membrane in mammalian cells (4), and this change has also been described as altering the ALP effects (42). On the other hand, the ability of ALP to overcome daunomycin resistance in the MDR *Leishmania* line could also be influenced by an ALP-mediated increase in membrane fluidity (11, 30), because membrane fluidization has been described to inhibit the mammalian Pgp ATPase activity (36). The finding of other specific genes involved in ALP resistance is of great significance, and we are therefore currently performing functional cloning studies with *Leishmania* spp. to this end.

We consider that the study of the molecular mechanisms involved in the resistance to ALP is of considerable interest for pharmaceutical and clinical purposes in the area of antiparasite chemotherapy. The increasingly widespread use of ALP in the treatment of visceral and cutaneous leishmaniasis could induce the appearance of resistance. Therefore, understanding how it arises could lead to strategies for new and more effective generation of antiprotozoal drugs. Finally, *Leishmania* multidrug transporters were thought to be involved in resistance to drugs not used to treat leishmaniasis; consequently, their clinical involvement had not been well established. However, their implication in ALP resistance together with the fact that many new potential leishmanicidal agents, such as azoles, are known substrates of ABC transporters, and thus could induce a drug resistance phenotype, strengthens the clinical relevance of this ABC transporter and supports the ever-increasing interest in the development of new specific inhibitors.

ACKNOWLEDGMENTS

This study was supported by Spanish grants CICYT-FEDER IFD97-0747-C04-01/03 (A.G. and S.C.) and PPQ2000-1655-C02-02 (F.G.). F.J.P.-V. was the recipient of a fellowship from the Ministerio de Educación y Cultura (Spain), and A.P.-T. was the recipient of a fellowship from the Agencia Española de Cooperación Internacional (Becas MUTIS).

We thank Pilar Navarro for help with parasite culture and Carmenza Spadafora for improving the English of the manuscript. We also acknowledge Pharmacia-Spain (Barcelona) for providing the daunomycin used in this study.

F.J.P.-V. and A.P.-T. contributed equally to this work.

REFERENCES