Fluorescence Assay for Studying the Ability of Macrolides To Induce Production of Ribosomal Methylase

Gervais Clarebout and Roland Leclercq*

Service de Microbiologie, UPRES EA 2128, Hôpital Côte de Nacre, Université de Caen, 14033 Caen Cedex, France

Received 27 September 2001/Returned for modification 5 January 2002/Accepted 7 April 2002

A screening assay to test the inducing capacity of macrolides by fusing the attenuator of the inducible erm (B) gene from Streptococcus pneumoniae HM28 with the gfpmut1 gene has been designed. Fluorescence was detected under UV light around disks impregnated with inducer macrolides (erythromycin or azithromycin) but not with noninducer ketolides. Induction could be quantified by fluorometry.

Resistance to macrolide-lincosamide-streptogramin B antibiotics defining the so-called MLS phenotype is common in streptococci and enterococci (11). It is mediated by dimethylation of adenine 2058 in the ribosomal 23S rRNA target, which reduces the affinity between the antibiotic and the ribosome (17). The genes that encode 23S rRNA methylases are designated erm (erythromycin resistance methylase). In streptococci and enterococci, MLS resistance is generally encoded by genes belonging to the erm (B) group (13). Expression of MLS resistance may be inducible or constitutive, depending upon a regulatory region preceding the gene (10, 18). In contrast to the pattern of inducer macrolides for the staphylococcal gene erm(C), which is limited to 14- and 15-member ring macrolides, erm(B) is inducible by most members of the MLS group (10). Recently, a new class of macrolides, the ketolides, which are derivatives of clarithromycin or erythromycin A, were introduced into clinical practice (1, 7, 8; C. Agouridas, Y. Benedetti, A. Denis, O. Le Mar-...
were plotted and lag phases were calculated. All experiments were conducted twice.

Fluorescence induction assays. Fluorescence induction was detected qualitatively by the disk diffusion method (4). Disks impregnated with 15 μg of the various macrolides and ketolides were placed on inoculated blood agar plates which were incubated for 24 h at 37°C and observed under UV light. For quantitative assays, overnight \(S. aureus \) RN4220/pUV4 or \(S. aureus \) RN4220/pUV5 cultures grown in Trypticase soy broth were used to inoculate fresh medium at a dilution of 1:25. After 3 h of incubation at 37°C under aeration, cells were added to Trypticase soy broth at 10⁶ CFU/ml, containing increasing concentrations of antibiotics, and incubated for 1 h at 37°C. The cultures were then washed three times with phosphate-buffered saline, and cells were resuspended in phosphate-buffered saline at 10⁶ CFU/mL. The fluorescence intensity was determined by spectrofluorometry performed with a Hitachi model F-1200 fluorescence spectrophotometer (Hitachi Co., Tokyo, Japan) at an excitation wavelength of 460 nm and an emission wavelength of 510 nm.

MLS resistance phenotypes. The MICs of and induction of resistance by erythromycin, telithromycin, and RU 69874 were determined for \(S. pneumoniae \) HM28 and \(E. faecalis \) BM4110/pAMβ1 (Table 1). Preinduced cells of \(S. pneumoniae \) HM28 challenged with erythromycin had a lag phase that was shortened, confirming that MLS resistance was inducible by this antimicrobial. As expected, expression of erythromycin resistance in \(E. faecalis \) BM4110/pAMβ1 was constitutive. Telithromycin did not appear to be an inducer for MLS resistance in \(S. pneumoniae \) HM28; in contrast, RU 69874 did reduce the lag phase, confirming the role of the L-cladinose residue in induction. Telithromycin was active only against the inducible strain \(S. pneumoniae \) HM28.

Induction of fluorescence by macrolides. The ability of erythromycin and ketolides to induce fluorescence was studied with fusion constructs. After exposure to UV light, agar plates spread with \(S. aureus \) RN4220/pUV4 exhibited fluorescence localized at the border of inhibition zones for disks containing erythromycin and spiramycin. Fluorescence was barely visible with telithromycin and HMR 3787; however, HMR 3562 in-

TABLE 1. Induction of MLS resistance assessed by growth curve measurements against strains used in fusion experiments

<table>
<thead>
<tr>
<th>Strain</th>
<th>Antibiotic</th>
<th>MIC (μg/ml)</th>
<th>Lag phase time (h) for Uninduced culture</th>
<th>Induced culture (inducing concen [μg/ml])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S. pneumoniae) HM28</td>
<td>Erythromycin</td>
<td>256</td>
<td>22.3</td>
<td>11.5 (25)</td>
</tr>
<tr>
<td></td>
<td>Telithromycin</td>
<td>0.03</td>
<td>13.2</td>
<td>13.7 (0.003)</td>
</tr>
<tr>
<td></td>
<td>RU69874</td>
<td>2</td>
<td>43.9</td>
<td>20.8 (0.2)</td>
</tr>
<tr>
<td>(E. faecalis) BM4110/pAMβ1</td>
<td>Erythromycin</td>
<td>8,000</td>
<td>9</td>
<td>8.2 (800)</td>
</tr>
<tr>
<td></td>
<td>Telithromycin</td>
<td>32</td>
<td>22.5</td>
<td>22.1 (3.2)</td>
</tr>
<tr>
<td></td>
<td>RU69874</td>
<td>16</td>
<td>11.8</td>
<td>11.7 (1.6)</td>
</tr>
</tbody>
</table>

* Challenge concentrations were 50, 0.006, and 0.4 μg/ml for erythromycin, telithromycin, and RU69874, respectively.

* Challenge concentrations were 1,600, 6.4, and 3.2 μg/ml for erythromycin, telithromycin, and RU69874, respectively.

* Results are means of two experiments.
and telithromycin (closed squares) in *S. aureus*-produced a weak fluorescence (Fig. 1). Fluorescence was strongly expressed in the presence of RU 69874. The fluorescence of *S. aureus* RN4220/pUV5 was expressed in the absence of antibiotic and was not enhanced in the presence of erythromycin or spiramycin (data not shown).

Fluorescence expressed in the presence of erythromycin, azithromycin, telithromycin, RU 69874, and two fluoroketolides (HMR 3562 and HMR 3787) was quantified by spectrofluorometry (Fig. 2). For noninduced *S. aureus* RN4220/pUV4, no basal fluorescence could be detected, while cells of *S. aureus* RN4220/pUV5 expressed a fluorescence equal to approximately 90 U, irrespective of the presence or absence of a macrolide (data not shown). Azithromycin and erythromycin were strong inducers with fluorescence peaks reaching 194 U at 0.09 μg/ml and 144 U at 0.06 μg/ml, respectively. Fluorescence was detected at 0.02 to 0.1 times the MIC of the macrolides for *S. aureus* RN4220/pUV4, reaching a peak at nearly one-quarter to one-half the MIC and then decreasing rapidly at higher concentrations. By contrast, telithromycin (Fig. 2) and the 2-fluoroketolides HMR 3562 and HMR 3787 (data not shown) induced a very weak fluorescence. The fluorescence maxima were 14.6, 18.6, and 21.4 U for telithromycin, HMR 3562, and HMR 3787, respectively. As expected, RU 69874 induced marked fluorescence.

Therefore, the pattern of induction by the antibiotics was similar, as determined by fluorescence or growth curve experiments. However, the fluorescence assay was convenient and easy to use, since it did not require substrates or cofactors. Additionally, the reporter system also delineates viable cells. However, the assay can be used to study qualitatively or quantitatively the relationship between structure and activity of the macrolides, ketolides, or any inducer of methylase production.

We thank Patrice Courvalin and Stanley Falkow for the gift of plasmid pAT505 containing *gfp*mut.

This work was supported by grants from Aventis and the Fondation de la Recherche Médicale.

REFERENCES

