Molecular Characterization of a Carbapenem-Hydrolyzing Class A β-Lactamase, SFC-1, from Serratia fonticola UTAD54

Isabel Henriques,1 Alexandra Moura,1 Artur Alves,1 Maria José Saavedra,2 and António Correia1*

Center for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro,1 and CECAV, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Vila Real,2 Portugal

Received 11 September 2003/Returned for modification 20 November 2003/Accepted 6 February 2004

An environmental isolate of Serratia fonticola resistant to carbapenems contains a gene encoding a class A β-lactamase with carbapenemase activity. The enzyme was designated SFC-1. The \bla_{SFC-1} gene is contained in the chromosome of S. fonticola UTAD54 and is absent from other S. fonticola strains.

The prokaryotic species Serratia fonticola, a species of the family Enterobacteriaceae, includes organisms that occur naturally in environmental waters (3); occasionally, some strains cause infections in humans (15). A recent study on the natural antimicrobial susceptibilities of strains of Serratia species (23) showed that S. fonticola expresses both a chromosomally encoded extended-spectrum class A β-lactamase and a species-specific AmpC β-lactamase. The class A enzyme corresponds to the previously characterized β-lactamase SFO-1 (13), and the homologous sequence FON-A (GenBank accession no. AJ251239) is common to S. fonticola (19).

In a previous report (18), an environmental isolate designated S. fonticola UTAD54 was shown to be resistant to carbapenems. This phenotype could be attributed to a gene encoding a class B metallo-enzyme (Shf-I) that was isolated from a genomic library (18). An additional screening of the library was done on Luria-Bertani plates supplemented with ampicillin (50 μg/ml) and kanamycin (30 μg/ml) to select for inserts and the vector, respectively. Some of the clones obtained were negative when screened by PCR using primers (18) for genes homologous to SFO-1. A recombinant plasmid containing a 1.8-kb insert was selected for study and designated pH18.

Characterization of a new β-lactamase gene. Plasmid DNA was prepared with a Qiaprep kit (Qiagen, Courtaboeuf, France), and both strands of the insert were sequenced on an ABI cycle sequencer A373 (Applied Biosystems/Perkin-Elmer, Foster City, Calif.) using the ABI Prism dye terminator kit. Analysis of sequence data revealed the presence of an open reading frame of 927 bp encoding a 33.6-kDa protein containing 309 amino acids (Fig. 1). Four nucleotides upstream of the ATG codon have the sequence AAGG, a putative ribosome-binding site (RBS). A typical

1.8-kb insert was selected for study and designated pIH18.

Analysis of sequence data revealed the presence of an open reading frame of 927 bp encoding a 33.6-kDa protein containing 309 amino acids (Fig. 1). Four nucleotides upstream of the ATG codon have the sequence AAGG, a putative ribosome-binding site (RBS). A typical

The overall G+C content of \bla_{SFC-1} (45.3%) is characteristic of genes of Enterobacteriaceae.

A similarity search was performed with BLAST (1). SFC-1 had the highest similarity to the class A carbapenemases, in particular KPC-1 (62% identical) from Klebsiella pneumoniae (21), Sm-1 (58%), NMC-A (59%), and IMI-1 (59%) (12). Lower similarity scores were returned for the other class A β-lactamases. No putative LysR-type regulator gene was identified upstream of the \bla_{SFC-1} gene, whereas such regulators are transcribed upstream of the genes coding for NMC-A, Sm-1, and IMI-1 (7, 8).

The software SignalP (11) identified a bacterial signal peptide of 26 amino acids in the amino-terminal sequence (Fig. 1). Cleavage of this signal peptide would yield a mature protein of 30.7 kDa with a pI of 7.95.

Within the mature protein, a serine-serine-phenylalanine-lysine tetrad (S-S-F-K) was found, as was a lysine-threonine-glycine (KTG) motif. These motifs (SXXK and KTG) are characteristic of serine β-lactamases (16, 22). The nine invariant residues typical of class A enzymes (G45, S70, K73, P107, S130, D131, A134, E166, and G236) are conserved in the SFC-1 sequence. From the residues suggested to be important for class A carbapenemase activity (C69, S70, K73, H105, S130, R164, E166, N170, D179, R220, K234, S237, and C238), only S237 was not conserved in the SFC-1 sequence.

The deduced amino acid sequence of SFC-1 was aligned to the sequences of 15 class A β-lactamases, using CLUSTAL W at the European Molecular Biology Laboratory website (http://www.ebi-heldelberg.de/). The enzymes and their GenBank accession numbers were the following: KPC-1 (24) from K. pneumoniae (AAG13410), IMI-1 (17) from Enterobacter cloacae (AAR93461), Sm-1 (9) from Serratia marcescens (CA882281), OXY-1 (2) from Klebsiella oxytoca (P22391), CITTD1 (14) from Citrobacter diversus (S19006), YENT (20) from Yersinia enterocolitica (Q01166), CTX-M-12 (19) from K. pneumoniae (AAG34108), CTX-M-14 (19) from Escherichia coli (CAC95170), Toho-1 (6) from E. coli (BAA07082), SFO-1 (6) from E. cloacae (BAA76882), FONA-3 from S. fonticola (CAB61639), SER_FON (13) from S. fonticola (P80545), TEM-1 (24) from E. coli (AAR25033), SHV-1 (24) from E. coli (P14557), and CARB-3 (4) from Pseudomonas aeruginosa (P37322). The dendrogram shown in Fig. 2 was derived from

* Corresponding author. Mailing address: Center for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal. Phone: 351-234370778. Fax: 351-234426408. E-mail: acorreia@bio.ua.pt.
the alignment: SFC-1 clusters to the class A carbapenemases and is more closely related to a subgroup that includes the enterobacterial enzymes of extended hydrolytic spectrum.

Susceptibility to antibiotics. The MICs were determined by the E-test method (Biodisk, Solna, Sweden), and susceptibility categories were allocated according to those described in reference 10. Table 1 shows the MICs for *S. fonticola* UTAD54, *E. coli* transformed with plasmid pIH18, and untransformed *E. coli*. The DNA insert encoding SFC-1 when replicating in *E. coli* confers resistance to ampicillin, amoxicillin, piperacillin, cephalothin, and aztreonam and reduced susceptibility to meropenem and imipenem, and its activity is inhibited by the class A \(\beta \)-lactamase inhibitors. Such a resistance pattern is characteristic of a carbapenem-hydrolyzing class A \(\beta \)-lactamase.

![FIG. 1. Nucleotide and deduced amino acid sequences of the SFC-1 gene and its upstream and downstream regions. The putative -10 region and a potential RBS are in bold. The inverted repeat sequences that can act as a terminator of transcription are shaded. The putative signal peptide for protein secretion is underlined. Amino acids that correspond to conserved domains of class A \(\beta \)-lactamases are shown in bold.](image)

The probes were generated by PCR amplification in the presence of digoxigenin (Roche Molecular Biochemicals, Indianapolis, Ind.). For rRNA genes and the SFO-1 gene, the primers were previously reported (18). Specific primers were designed to amplify the *bla*

Table 1. MICs of antibiotics for *S. fonticola* UTAD54, *E. coli* XL2 Blue (pH18), and *E. coli* XL2 Blue (reference strain)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>S. fonticola UTAD54</th>
<th>E. coli XL2 Blue (pH18)</th>
<th>E. coli XL2 Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>>256</td>
<td>>256</td>
<td>2</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>>256</td>
<td>>256</td>
<td>4</td>
</tr>
<tr>
<td>Amoxicillin-CLA</td>
<td>12</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>32</td>
<td>64</td>
<td>0.75</td>
</tr>
<tr>
<td>Piperacillin-TZB</td>
<td>0.38</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>>256</td>
<td>>256</td>
<td>6</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.032</td>
<td>0.75</td>
<td>0.032</td>
</tr>
<tr>
<td>Ceftoxime</td>
<td>2</td>
<td>1</td>
<td>0.064</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>1.5</td>
<td>64</td>
<td>0.19</td>
</tr>
<tr>
<td>Meropenem</td>
<td>>32</td>
<td>0.38</td>
<td>0.008</td>
</tr>
<tr>
<td>Imipenem</td>
<td>>32</td>
<td>4</td>
<td>0.125</td>
</tr>
</tbody>
</table>

* CLA, clavulanic acid; TZB, tazobactam.
ATGTCACGCACCGTGACTG-3', and SflR (5'-GATGA ATTCTTAGAAGCCGATAGACTTTCC-3'). The probes for the SFC-1 and SFO-1 genes revealed two different I-CeuI bands, as shown in lanes 1 and 2 of Fig. 3; the probe for rRNA genes hybridized to the six I-CeuI bands (lane 3). These results thus indicate that both β-lactamase genes are chromosomally encoded and apart from each other. Hybridization of the probe for bla_{SFC-1} with DNA from \textit{S. fonticola} strains LMG 7882^T, DSM 9663, and CIP 103850 did not detect homologous sequences in these genomes.

Concluding remarks. \textit{S. fonticola} UTAD54 is an exceptional strain, carrying the naturally occurring β-lactamases of \textit{S. fonticola} and different classes of carbapenemases, SFC-1 and the previously reported metallo-enzyme Sfh-I. Those enzymes are not present in other \textit{S. fonticola} strains. These exceptional characteristics could be the result of the acquisition of a genetic element by horizontal gene transfer.

Nucleotide sequence accession number. The nucleotide sequence reported here was deposited in GenBank under accession number AY354402.

This work was financed by the Fundação para a Ciência e a Tecnologia through grants to Artur Alves (SFRH/BD/10389/2002) and Isabel Henriques (SFRH/BD/5275/2001).

REFERENCES

