Study Design Questions in Treatment of Children with Acute Otitis Media

Comment Letter 1

In comparing high-dose azithromycin with high-dose amoxicillin-clavulanate for children with recurrent or persistent acute otitis media (AOM), Arrieta and colleagues reported that, at days 12 to 16, clinical success rates for the two regimens were comparable and that, at days 28 to 32, clinical success rates for azithromycin were superior (1). The study incorporated many favorable features, including a double-dummy design, stringent criteria for the diagnosis of AOM, and baseline tympanocentesis with culture of middle-ear contents. Unfortunately, the number of children whose baseline cultures were positive for pathogens was insufficient for the results of the study to be considered conclusive.

Of 296 children studied, baseline middle-ear cultures were positive in only 163 (55%). Among children whose baseline pathogen was Streptococcus pneumoniae, clinical success rates at days 12 to 16 were 85% (22 of 26) in those receiving azithromycin versus 80% (31 of 39) in those receiving amoxicillin-clavulanate (95% confidence interval [CI] of the difference in proportions, −13.7 to 23.9%). Corresponding values at days 28 to 32 were 86% (17 of 20) versus 67% (26 of 39) (95% CI of the difference, −24.8 to 22.2%). Among children whose baseline pathogen was Haemophilus influenzae, success rates at days 12 to 16 were 67% (24 of 36) for azithromycin versus 81% (25 of 31) for amoxicillin-clavulanate (95% CI of the difference, −34.7 to 6.8%). Corresponding values at days 28 to 32 were 47% (17 of 36) versus 52% (26 of 39) (95% CI of the difference, −28.4 to 19.6%). Given these CIs, the findings permit no inference either that the two regimens were equivalent or that either of the two regimens was superior to the other. However, the 95% CI of the difference in proportions at days 12 to 16 suggests that the efficacy of azithromycin for AOM caused by H. influenzae was less than that of amoxicillin-clavulanate, a circumstance that, as Arrieta et al. noted, has been reported previously (2). It was only with inclusion of the initially culture-negative children that the difference overall in clinical success rates between the two regimens at days 28 to 32 became statistically significant: 72% (107 of 148) for azithromycin versus 61% (88 to 144) for amoxicillin-clavulanate (P = 0.047). Yet the superiority of any antimicrobial drug over another in treating culture-negative children would seem difficult to account for except on the basis of chance. For the subgroup of initially culture-positive children ≤2 years of age—the most therapeutically problematic subgroup—outcome data were not provided.

The authors speculated that their relatively low culture positivity rate may have been attributable to suppression of bacterial growth by prior therapy or site-to-site variability in processing specimens. An alternative explanation would have been the possibility that some children had otitis media with effusion rather than AOM: a result would have been blurring of any differences in efficacy between the two regimens. In our limited experience, culture positivity rates in children with bona fide AOM have been as high in those already receiving antimicrobials as in those who have not been treated.

In summary, the study by Arrieta et al., while incorporating many favorable features, cannot, in our judgment, be viewed as having answered the question it set out to address.
only 30 patients per arm to differentiate a highly active agent from a placebo and 100 per arm from an agent with 60% bacteriologic efficacy, 234 and 780 patients per arm, respectively, are needed in bacteriologic diagnosis and clinical outcome studies (12). The study by Arietta et al. included needed in bacteriologic diagnosis and clinical outcome studies from a placebo and 100 per arm from an agent with 60% bacteriologic efficacy in order to determine if high-dose azithromycin offers any advantage (8).

Given all that has been learned in recent years about the need for bacterial eradication and its relationship to clinical outcome (3–11, 12; Hoberman et al., 43rd ICAAC), the continued overprescribing of antibiotics for this condition, and the ease of obtaining bacterial outcome data (8), it is disappointing that AOM studies are still being designed based only on clinical outcomes with small sample sizes. We therefore believe that the conclusion of these investigators that their data support consideration of high-dose azithromycin as an option for treating AOM in children who have failed first-line therapy or who experience recurrent episodes of AOM is not supported by the data presented.

REFERENCES

Michael R. Jacobs*
Department of Pathology
Case Western Reserve University and University Hospitals of Cleveland
11100 Euclid Ave.
Cleveland, OH 44106

Ron Dagan
Pediatric Infections Disease Unit
Soroka University Medical Center
Beer-Sheva 84101, Israel

Mendel E. Singer
Department of Epidemiology and Biostatistics
Case Western Reserve University School of Medicine
Cleveland, OH 44106

*Phone: (216) 844-3484
Fax: (216) 844-5601
E-mail: mjr6@cwru.edu

Authors’ Reply

We appreciate the comments of Drs. Hoberman and Paradise on our recent paper comparing high-dose azithromycin with high-dose amoxicillin-clavulanate for treatment of children with recurrent or persistent acute otitis media (AOM) (2). The study was a randomized, double-blind, double-dummy design, consistent with current Food and Drug Administration (FDA) guidance (4), with stringent criteria for diagnosis and carried out with high evaluability and compliance rates. Of all children randomized, 55% had positive cultures, a finding consistent with the 58 and 56% rates reported in two recent studies of children with recurrent or nonresponsive AOM (1, 9). Drs. Hoberman and Paradise express concern that the number of children with positive cultures was insufficient for the results to be considered conclusive. Among these 160 culture-positive children, we note that the 95% confidence interval for the difference in the success rates at days 12 to 16 was −14.3 to 10.4 and that for day 28 was −9.7 to 20.7, the lower bounds of both intervals within the prespecified value of −15. We suggest that these findings allow definitive conclusions to be drawn about noninferiority of the primary endpoint in comparing high-dose azithromycin 3-day therapy to 10-day amoxicillin-clavulanate treatment and in the culture-positive children.

We appreciate Dr. Dagan et al.’s comments on the value of double tympanocentesis studies employing a bacteriologic endpoint evaluated on days 4 to 6, and we would like to make the following points.

First, use of a fixed bacteriologic endpoint at days 4 to 6 fails to address fundamental differences among antibiotic classes with regard to mechanism of action and bactericidal activity. For instance, protein synthesis inhibitors, such as macrolides, kill more slowly than do cell-wall-active β-lactams (5). Thus, for macrolides—as noted by Babl et al. (3)—if follow-up tympanocentesis were to be performed at a later time point, eradication might be observed.

Second, when using a fairly insensitive, nonquantitative, “growth/no growth” bacteriologic endpoint, patients in whom a drug has achieved a significant reduction in bacterial load at days 4 to 6 would be erroneously classified as bacteriologic failures. Third, Johann-Liang et al. (8) recently discussed the low specificity of bacteriologic failure predicting clinical failure. Low values for Kappa coefficients from three double-tap studies demonstrated the lack of substantial correlation between bacteriologic and clinical outcomes. While a bacteriologic endpoint has value in evaluating rapid clearance of organisms,
bacterial persistence in the setting of clinical symptom resolution is too complex to simply equate an antibiotic with placebo.

Dagan et al. note that the response rates for azithromycin among children with *H. influenzae* are similar to rates of spontaneous resolution of infections caused by this pathogen, as reported by Howie and coworkers (6, 7). Our study compared two drugs under rigorous controls employing randomization and double blinding. It is difficult to make direct comparisons of these results with data from uncontrolled historical studies. In Howie’s studies, patient risk factors and inclusion criteria were not strictly defined; thus, his high spontaneous resolution rates may not be applicable to children with a history of recurrent or persistent disease. Similarly, the conclusions of Marchant and colleagues (10), which Dagan et al. cite in discussing sample size, are not applicable to the statistics employed prospectively in the present study. Marchant et al. derived a model from data on 293 patients treated with six different antimicrobials at various times over 9 years. The children were enrolled in several different arms of a treatment algorithm to derive a model for outlining criteria for detecting statistical differences in superiority studies. The comparator in our study (high-dose amoxicillin-clavulanate) is recommended for the treatment of children with recurrent or persistent AOM; thus, a noninferiority trial with a highly active comparator agent rather than a superiority trial is entirely appropriate. This trial design is supported by one of the recommendations of a recent FDA Advisory Committee reviewing issues in studies of AOM (11).

Moreover, the hypothetical sample sizes given by Dagan et al. (234 or 780 for bacteriologic diagnosis or clinical outcome studies) are for total sample sizes, not sample sizes per arm, as stated (10). In Fig. 1, data are plotted from the a priori defined primary endpoint at days 28 to 32, as well as several relevant subsets. A drug regimen would be considered noninferior to its comparator only if the lower bound of the 95% CI surrounding the difference between the two regimens remains within -15%. The results of the study in all patients, in patients with a positive baseline pathogen, and in children less than 2 years of age provide robust evidence that the trends in this study were independent of subset. Indeed, significant differences were observed in this double-blinded trial for overall clinical outcome at the day 28-to-32 visit and notably in children ≤2 years of age. This finding is consistent with reports from a recent international congress where superiority of azithromycin to amoxicillin-clavulanate was reported when time points beyond on-therapy assessments were measured and reported (A. Arguedas, D. Jorgensen, C. Soley, and M. W. Dunne, Abstr. 43rd Intersci. Conf. Antimicrob. Agents Chemother., abstr. G-1852, 2003; C. Quach, D. L. Moore, J. P. Collett, and J. Lelorier, Abstr. 43rd Intersci. Conf. Antimicrob. Agents Chemother., abstr. G-460, 2003).

REFERENCES

Antonio Arrieta
Children’s Hospital of Orange County
Orange, Calif.

A. Arguedas
Instituto de Atención Pediátrica
San Jose, Costa Rica 1150

Stan L. Block
Kentucky Pediatric Research
Bardstown, Ky.

S. L. Vargas
Grupo de Estudios Clínicos
Facultad de Medicina Universidad de Chile
Santiago, Chile

W. A. Erhardt
P. J. de Caparris*
Pfizer Inc.
New York, NY 10017

*Phone: (212) 733-7926
Fax: (646) 441-6661
E-mail: p.decapraris@pfizer.com