Therapeutic Effect of Nisin Z on Subclinical Mastitis in Lactating Cows

Junqiang Wu, Songhua Hu,* and Liting Cao

Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China

Received 12 May 2007/Returned for modification 16 June 2007/Accepted 25 June 2007

Bovine subclinical mastitis is an inflammation of the mammary gland caused by bacterial intramammary infection, accounting for large economic losses. Treatment of subclinical mastitis is not suggested for lactating cows due to the risk of milk contamination. The objectives of this study were to evaluate an antimicrobial peptide, nisin, in the treatment of subclinical mastitis in lactating cows. A total of 90 lactating Holstein cows with subclinical mastitis were randomly divided into nisin-treated (n = 46) and control (n = 44) groups. In the nisin-treated group, cows received an intramammary infusion of nisin at a dose of 2,500,000 IU once daily for 3 days while the control cows received no treatment. Milk samples were collected from the affected mammary quarters before treatment and 1 and 2 weeks after treatment for analyses of bacteria, somatic cells, and N-acetyl-β-D-glucosaminidase (NAGase). Results indicated that nisin therapy had bacteriological cure rates of 90.1% for Streptococcus agalactiae (10 of 11), 50% for Staphylococcus aureus (7 of 14), 58.8% for coagulase-negative staphylococci (7 of 17), and 65.2% for all cases (30 of 46). Meanwhile, only 15.9% (7 of 44) of untreated cows spontaneously recovered. NAGase activity in milk samples and the number of mammary quarters with a milk somatic cell count of ≥500,000/ml were significantly decreased after nisin treatment while no significant changes took place in the control group. Because of its therapeutic effects on bovine subclinical mastitis, as well as its safety in humans, nisin deserves further study to clarify its effects on mastitis caused by different pathogens.

Mastitis is the inflammation of the mammary gland in response to bacterial invasion. Clinical and subclinical mastitis are two major forms of intramammary infections (IMIs) in dairy cows. Clinical mastitis results in alterations in milk composition and appearance; decreased milk production; elevated body temperature; and swelling, redness, or heat in infected mammary glands. It is readily apparent and easily detected. However, detection of subclinical mastitis is more difficult because signs are not readily apparent. Consequently, subclinical mastitis often goes undetected with a tendency to persist, resulting in an elevated milk somatic cell count (SCC) and decreased milk production, which may lead to development of clinical mastitis and a chance for contagious bacteria to spread from infected to uninfected mammary glands. It is generally accepted that 70 to 80% of the estimated $140 to $300 loss per cow per year from mastitis relates to reduced milk production caused by asymptomatic subclinical mastitis (9). Antibiotic therapy is the most widely used approach to IMIs. Loss of milk due to discarding milk contaminated with antibiotics has been cited as a reason why treatment of subclinical mastitis is not suggested during lactation. Treatment is instead postponed until a clinical flare-up occurs or until dry-off, a time when antibiotics are often routinely used to treat all quarters in all cows. With increasing pressure to deliver milk with a low bulk milk SCC, it may not be viable, economically, to wait until dry-off before measures are taken to lower the prevalence of IMI. In addition, high culling rates due to high-SCC cows have been found in herds with a high milk SCC close to the upper legal limit (1). Treatment of subclinical mastitis during lactation could represent an alternative to culling. Thus, there is an interest in searching for new drugs suitable for subclinical mastitis therapy during lactation.

Nisin is a natural antimicrobial peptide of 34 amino acids produced by Lactococcus lactis (4). The peptide is suggested to be effective against a wide range of gram-positive bacteria, including mastitis pathogens (6, 19, 20, 25). In the United States, nisin was confirmed to be “generally recognized as safe” in 1988 (24). Because of its high antibacterial activity and nontoxicity for humans, nisin has already been employed as a food preservative for a long time and is licensed by 48 countries around the world (5). As an active ingredient, nisin has been formulated into some commercially available products for teat dipping to prevent mastitis (20). Although antibacterial activities of nisin have been reported, few research papers have been found as of yet regarding the use of nisin for subclinical mastitis treatment. The present study was designed to evaluate a nisin-based formulation for intramammary infusion in the treatment of subclinical mastitis in lactating cows on a commercial dairy farm. Changes in SCC, IMIs, and N-acetyl-β-D-glucosaminidase (NAGase) were evaluated before and after nisin treatment. Untreated subclinical cases were used as a control.

MATERIALS AND METHODS

Cows. The study was carried out on a dairy farm in Hangzhou, Zhejiang, China, with approximate 1,000 Holstein dairy cows that were milked by machine three times daily. A cow with a milk SCC of ≥500,000 cells/ml was considered to be suffering from mastitis. A total of 90 clinically healthy lactating Holstein cows with at least one quarter of natural subclinical mastitis (first lactation, n = 16; second lactation, n = 21; third lactation, n = 20; fourth lactation, n = 19; fifth lactation, 13; sixth lactation, n = 1) were used.

Nisin-based formulation. Purified nisin Z (18,000 IU/mg) was supplied as Silver-Elephant nisin by Zhejiang Silver-Elephant Bio-Engineering Co., Ltd., Hangzhou 310029, China. The study was carried out on a dairy farm in Hangzhou, Zhejiang, China, with approximate 1,000 Holstein dairy cows that were milked by machine three times daily. A cow with a milk SCC of ≥500,000 cells/ml was considered to be suffering from mastitis. A total of 90 clinically healthy lactating Holstein cows with at least one quarter of natural subclinical mastitis (first lactation, n = 16; second lactation, n = 21; third lactation, n = 20; fourth lactation, n = 19; fifth lactation, 13; sixth lactation, n = 1) were used.

Purified nisin Z (18,000 IU/mg) was supplied as Silver-Elephant nisin by Zhejiang Silver-Elephant Bio-Engineering Co., Ltd., Hangzhou 310029, China. The study was carried out on a dairy farm in Hangzhou, Zhejiang, China, with approximate 1,000 Holstein dairy cows that were milked by machine three times daily. A cow with a milk SCC of ≥500,000 cells/ml was considered to be suffering from mastitis. A total of 90 clinically healthy lactating Holstein cows with at least one quarter of natural subclinical mastitis (first lactation, n = 16; second lactation, n = 21; third lactation, n = 20; fourth lactation, n = 19; fifth lactation, 13; sixth lactation, n = 1) were used.
Tiantai, Zhejiang, China. The nisin-based formulation mainly contained 2,500,000 IU of nisin Z. Before treatment, nisin was dissolved in 20 ml of sterile physiological saline.

Irritation test of nisin Z on bovine mammary gland. The cow (00402) used for the irritation test was at her first freemilkation and 28 months old. The cow was clinically healthy, and all quarters were negative by the California mastitis test and bacteriological examination. The left forequarter received an intramammary infusion of physiological saline (20 ml), and the left hindquarter, right hindquarter, and right forequarter were intramammary infused with nisin Z at 1,250,000 IU, 2,500,000 IU, and 5,000,000 IU, respectively. The infusions were administered after the morning milking. Quarter milk samples were collected 24, 48, and 72 h post-intramammary infusion for analysis of SCC and NAGase.

Treatment. Cows with subclinical mastitis were randomly divided into nisin-treated (n = 46) and control (n = 44) groups. In the nisin-treated group, the cows received an intramammary infusion of nisin at a dose of 2,500,000 IU once daily after morning milking for 3 days, while in the control group, no treatment was performed. Before nisin treatment, the diseased quarter was thoroughly milked out by hand and the teat end was cleaned using a cotton swab soaked with 70% alcohol.

Milk sample collection and analysis. Fore-milk samples were aseptically collected from the affected mammary quarters immediately before initiating treatment and 1 and 2 weeks after terminating treatments for bacteriological examination, somatic cell counting, and the NAGase test.

Bacteriological examination. The milk sample was streaked on a blood agar plate and incubated for 24 to 48 h at 37°C. After incubation, the plate was read for primary isolation of mastitis pathogens. A milk sample was considered contaminated when three or more different colony types of bacteria were detected. The single colony on the blood agar plate was inoculated into broth medium and incubated for 18 to 24 h at 37°C. Further identification of specific bacterial species such as staphylococcus, streptococcus, and gram-negative bacteria was performed according to the methods described by the National Mastitis Council (14).

SCC analysis. For determination of SCC, milk samples were preserved with bronopol (2 μg/ml) after sample collection and analyzed using Integrated Milk Testing MillsScan FT6000 (FOSS, Waltham, MA). NAGase test. Milk samples were frozen and thawed for three cycles to release NAGase within cells and then centrifuged at 3,500 rpm for 20 min to remove the cream layer. The skim milk was adjusted to pH 4.6 by the addition of 10% acetic acid and centrifuged at 3,500 rpm for 20 min to obtain whey at the top layer. The NAGase activity level in milk whey was determined using commercial kits (Nanjiang Bioengineering Institute, Jiangsu, China) following the manufacturer’s protocols. The optical density of para-nitrophenol during the reaction (at 37°C) between the 4-methylumbelliferyl-β-D-glucosaminide substrate and the NAGase contained in the analyzed samples was measured spectrophotometrically in triplicate at a wavelength of 400 nm. One unit of NAGase activity represents the amount of para-nitrophenol released from 1 liter of whey in 15 min at 37°C.

Detection of nisin residues in milk following intramammary infusion in subclinically mastitic quarters. Two milk samples were aseptically collected from each of three subclinically mastitic cows at 24, 48, 72, and 96 h after termination of treatment with nisin at a dose of 2,500,000 IU for 3 days. One sample was from a nisin-treated quarter, and the other was from untreated quarters (composite milk). Nisin in milk samples was evaluated by the agar diffusion assay mainly as described by Pongtharangkul and Demirci (17). Briefly, S1 agar containing 1.5% (wt/vol) Tween 20 was autoclaved and cooled to 45°C. An overnight culture of Micrococcus luteus (NCIB 8166) was then added in a final concentration of 0.2% (vol/vol). Precisely 210 ml of this suspension was poured into each sterile petri plate (280 × 210 mm). After that, plates were kept at room temperature for 2 h to allow agar solidification. The plates were then stored at 4°C for 24 h. Holes were bored on the plates using a 7-mm-outside-diameter stainless steel borer. One hundred microliters of nisin standard solution (20, 40, 80, 160, and 320 IU/ml) as a test solution was dispensed into each well. The plates were then incubated at 30°C for a minimum of 20 h to give a well-defined inhibition zone. Seven wells were used for each nisin concentration. Using a caliper, inhibition zone diameters were measured to the nearest 0.1 mm. The mean of the largest and smallest diameters was calculated for oval inhibition zones. A regression equation was calculated for inhibition zone diameter as a function of log nisin concentration.

Test of susceptibility of Staphylococcus aureus isolates to antibacterial agents. Twenty-five S. aureus isolates were obtained from the mastitis cases. With a sterile loop, four to five colonies of S. aureus from a pure culture were picked up and suspended in 5 ml of sterile physiological saline. The bacterial suspension was adjusted to 1 × 108 CFU/ml according to the McFarland standard (2). Three hundred fifty microliters of the suspension was inoculated on a nutrient agar plate. Susceptibility test disks were obtained commercially (Hangzhou Tian He Microorganism Reagent Co., Ltd., Hangzhou, China). After 0.5 h, disks containing penicillin G (10 μg), gentamicin (10 μg), cefazolin (30 μg), norfloxacin (5 μg), or sulfamethoxazole-trimethoprim (SMZ-TMP) (23.75/1.25 μg) were placed using a sterile forceps onto the agar surface and gently pressed down to ensure contact. Plates were incubated at 37°C for 20 h. Subsequently, the diameter of the inhibition zone around each disk was measured. Based on the diameter of the inhibition zone, the susceptibilities of the bacterial isolates to penicillin G, gentamicin, cefazolin, norfloxacin, and SMZ-TMP were classified as sensitive (≥29 mm, ≥15 mm, ≥18 mm, ≥17 mm, and ≥16 mm, respectively), resistant (≤28 mm, ≤12 mm, ≤14 mm, ≤12 mm, and ≤10 mm, respectively), and intermediate (the ranges between sensitive and resistant) as outlined by Hangzhou Tian He Microorganism Reagent Co., Ltd., Hangzhou, China.

Determination of MIC of nisin in milk. The determination of MIC of nisin in milk is based on the change of colorless tetrazolium chloride into red formazan in the presence of metabolically active bacteria. S. aureus isolates were inoculated on blood agar plates for incubation of 24 h at 37°C. After the incubation, a typical colony of S. aureus was inoculated into skim milk for incubation of 18 h, and the culture was then diluted (1:20) in skim milk. Nisin Z was dissolved in skim milk at a concentration of 640 IU per ml. Twofold serial dilutions of the skim milk were made in a 96-well polystyrene plate, and nisin-free skim milk was added in the wells on the right side as a negative control. To each well, S. aureus diluted in skim milk (20 μl) was added, and the well was incubated at 37°C for 2 h. After that, each well was supplemented with 6 μl of 4% tetrazolium chloride (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). The color change of each well was viewed at a 30-minute interval. The MIC was expressed as the lowest concentration of nisin without color change.

Statistical analysis. SAS 9.0 software for Windows was used for statistical analysis. Chi-square analysis was used to compare the numbers of quadrants with an SCC of ≥5 × 105/ml between the two groups at each sampling occasion as well as the numbers of quadrants with an SCC of ≥5 × 105/ml and IMI between pretreatment and posttreatment in the same group. Analysis of variance was used to compare the mean activities of NAGase between the two groups at each sampling occasion and between pre- and posttreatment times in the same group. Probabilities of less than 0.05 were considered significant.

RESULTS

Irritation by intramammary infusion of nisin into bovine mammary gland. Following a single intramammary infusion, both SCC and NAGase in milk tended to increase when the dose of nisin increased from 0 to 5,000,000 IU (Fig. 1). No visible local reactions and a decreased milk yield were observed in the mammary gland infused with physiological saline (left forequarter) or infused with nisin at 1,250,000 IU (left hindquarter) or 2,500,000 IU (right hindquarter). However, the mammary quarter (right forequarter) became slightly swollen and tender with clots and flakes in the milk with apparently decreased milk production after infusion of 5,000,000 IU of nisin. The visible abnormalities persisted until 24 h after the intramammary infusion.

Persistence of milk residue following intramammary infusion of nisin into subclinically mastitic quarters. For the composite milk collected from untreated quarters, nisin (75.8 ± 63.5 IU/ml and 5.7 ± 7.3 IU/ml) was detected 24 and 48 h, respectively, after intramammary infusion of nisin Z at the dose of 2,500,000 IU once daily for 3 days for subclinical mastitis therapy (Fig. 2). For the composite milk collected from untreated quarters, no nisin residue was detected.

Milk SCC in subclinically mastitic mammary glands treated with nisin. Mammary quarters with a milk SCC of ≥500,000 cells/ml were reduced in number from 46 at pretreatment to 27 and 31 quarters at 1 and 2 weeks after nisin treatment, respectively (P < 0.01), while no changes were found in the control group (P > 0.05) (Table 1).
NAGase activity in subclinically mastitic mammary glands treated with nisin. NAGase activity in milk samples was reduced from 43.7 ± 35.5 U/liter at pretreatment to 26.2 ± 21.3 U/liter and 28.9 ± 23.2 U/liter 1 and 2 weeks, respectively, after nisin treatment (P < 0.05), while no changes were found in the control group (P > 0.05) (Table 2).

Changes of bacteria detected from subclinically mastitic milk samples before and after treatment. Of the bacteria isolated from milk samples, *S. aureus*, coagulase-negative staphylococci (CNS), and *Streptococcus agalactiae* were the predominant causative pathogens of subclinical mastitis, being isolated from 27.8%, 31.1%, and 33.3% of cows, respectively (Table 3), and the others accounted for only 7.8%. After intramammary infusion of nisin at a dose of 2,500,000 IU once daily for 3 days, IMI was reduced by 43.5% (20 of 46) and 65.2% (30 of 46) (P < 0.01) at 1 and 2 weeks after treatment, respectively. For *S. aureus* and *Streptococcus agalactiae IMIs*, 50% (7 of 14) and 90.9% (10 of 11), respectively, of the subclinical mastitis cases became bacteriologically negative (P < 0.05). No changes were found in the control group (P > 0.05).

Antibiotic resistance of *Staphylococcus aureus* isolated from mastitic cows. Of 20 *S. aureus* isolates, the isolates resistant to penicillin, gentamicin, cefamezin, norfloxacin, and SMZ-TMP were 80%, 45%, 5%, 75%, and 90% of all isolates, respectively.

DISCUSSION

It was previously found that infusion of nisin or another drug solution into the mammary gland in healthy cows caused irritation. Taylor et al. (22) observed irritant effects after intramammary infusion of nisin in oil in healthy cows. Hulse and Lancaster (10) found a small number of clots in milk (an indicator of irritation) after intramammary infusion of nisin (2,500,000 IU) in cows. Gill et al. (8) reported a large increase in milk SCC after a single infusion of either filter-sterilized broth lysate or a CsCl gradient-purified phage preparation. In the present study, purified nisin dissolved in sterile saline was used for intramammary infusion. Clinical signs were observed only in the mammary quarter infused with 5,000,000 IU of nisin, and no visible changes were seen in milk and mammary quarters when 2,500,000 IU or less of nisin was administered, although milk SCCs and NAGase activities were elevated in those quarters (Fig. 1).

Hulse and Lancaster (10) reported that 83 and 15 IU/ml were detected in milk samples 24 and 48 h, respectively, after intramammary infusion of nisin Z at a dose of 2,500,000 IU once daily for 3 days.
intradammary infusion of 2,500,000 IU of nisin. A similar result was observed in our present study. After intramammary
infusion of the same amount of nisin once daily for 3 days for
subclinical mastitis therapy, the milk from treated quarters
infusion of the same amount of nisin once daily for 3 days for
intramammary infusion of 2,500,000 IU of nisin. A similar
Control 44 41.1/H11006
control or pretreatment SCCs, indicating the value of nisin in
Milk SCC consists of macrophages, polymorphonuclear leu-
kocytes, lymphocytes, and epithelial cells (11, 12). Penetration of pathogenic bacteria into the mammary gland stimulates
polymorphonuclear leukocytes to migrate from the blood-
stream into the milk compartment, resulting in a rapid rise in
milk SCC (21). A high SCC is usually indicative of an immune
response to IMI with bacterial pathogens (7), and a low SCC
(<150,000 cells/ml for quarter milk (21)) generally indicates
freedom from such infection. In this study, intramammary in-
fusion of nisin significantly decreased the number of quarters
with high milk SCCs (≥5 × 10^7 cells/ml) compared to the
control or pretreatment SCCs, indicating the value of nisin in
the treatment of subclinical mastitis for decreasing milk SCC
(Table 1). This result also paralleled the significantly decreased
milk NAGase activity posttreatment in the nisin-treated group
compared with the control group or pretreatment, since the
increased activity of milk NAGase may be observed in the
inflammation of the mammary gland (15, 18, 23).

In conclusion, intramammary administration of nisin at a
dose of 2,500,000 IU once daily for 3 days was effective in
treatment of subclinical mastitis caused by several different

Table 2. NAGase in milk before and after nisin treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of cases</th>
<th>Mean conc of NAGase (U/liter of milk) ± SD</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 wk</td>
<td>2 wk</td>
</tr>
<tr>
<td>Nisin</td>
<td>46</td>
<td>43.7 ± 35.5(^a)</td>
<td>26.2 ± 21.3(^ab)</td>
<td>28.9 ± 23.2(^ab)</td>
</tr>
<tr>
<td>Control</td>
<td>44</td>
<td>41.1 ± 32.0(^a)</td>
<td>39.7 ± 29.5(^b)</td>
<td>44.2 ± 39.3(^b)</td>
</tr>
</tbody>
</table>

\(^a\) Means within the same time point with different superscript capital letters differ significantly (P < 0.05).

\(^b\) Significantly different compared with pretreatment (P < 0.05).

Table 3. Milk samples with positive bacteriological examination results

<table>
<thead>
<tr>
<th>Bacterium</th>
<th>No. of positive samples in group at wk posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>0(^w)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>14</td>
</tr>
<tr>
<td>CNS</td>
<td>17</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>11</td>
</tr>
<tr>
<td>Streptococcus dysgalactiae</td>
<td>2</td>
</tr>
<tr>
<td>Streptococcus uberis</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^a\) Pretreatment.

\(^b\) Significantly different compared with pretreatment value within the same group (P < 0.05).

\(^w\) Posttreatment.
mastitis pathogens in lactating dairy cows on a commercial dairy farm. Nisin therapy resulted in the bacteriological cure rates of 90.1% for Streptococcus agalactiae (10 of 11), 50% for Staphylococcus aureus (7 of 14), 58.8% for CNS (7 of 17), and 43.5 or 65.2% for all cases (20 or 30 of 46) 1 and 2 weeks posttreatment, respectively. Meanwhile, only 15.9% (7 of 44) of quarters spontaneously recovered in the untreated control group. Mammary quarters with a milk SCC of \geq500,000 cells/ml were significantly reduced in number from 46 at pre-treatment, respectively, while no changes were found in the control group. Following intramammary infusion, nisin was detected in milk only at 24 h (75.8 \pm 36.5 IU/ml) and 48 h (5.7 \pm 7.3 IU/ml), levels which were much lower than the upper limit (500 mg/ml) allowed as a preservative in milk by the Chinese authorities. Because of its efficacy in the treatment of bovine subclinical mastitis, especially drug-resistant S. aureus-caused IMI, as well as its safety in humans, nisin deserves further study to clarify its effects on mastitis caused by different mastitis pathogens on a larger scale.

ACKNOWLEDGMENTS

We gratefully acknowledge the participation of the owners and veterinarians of the farm.

The financial support from the Department of Science and Technology of Zhejiang Province (2005C22035 and 2005C12015) is also acknowledged.

REFERENCES