Characterization of the Carbapenem-Hydrolyzing Oxacillinase Oxa-58 in an Acinetobacter Genospecies 3 Clinical Isolate

Sara Martí,1 Javier Sánchez-Céspedes,1 M. Dolores Blasco,2 Marc Ruiz,1 Paula Espinal,1 Verónica Alba,1 Felipe Fernández-Cuenca,2 Alvaro Pascual,3 and Jordi Vila1*

Servei de Microbiologia, Centre de Diagnòstic Biomèdic, Hospital Clinic, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain;1 Departament de Microbiologia i Ecologia, Universitat de Valencia, Valencia, Spain;2 and Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain

Received 17 January 2008/Returned for modification 20 March 2008/Accepted 16 May 2008

Based on imipenem resistance in an Acinetobacter genospecies 3 clinical isolate, we were able to identify, for the first time in this genomic species, a plasmid-encoded blaOXA-58 gene that was 100% homologous to the same gene in Acinetobacter baumannii.

Since 1986 members of the genus Acinetobacter are determined by DNA-DNA hybridization. Genospecies 1 (Acinetobacter calcoaceticus), 2 (A. baumannii), 3, and 13TU are genetically closely related and are commonly known as the A. calcoaceticus-A. baumannii complex. With the exception of genospecies 1, the other members of this complex have been involved in nosocomial infections and have the ability to spread in hospitals (3, 9, 19, 23, 25, 26). Treatment of these nosocomial infections is becoming a problem because increasing resistance to antibiotics, especially in the case of nosocomial infections is becoming a problem because increasing resistance to antibiotics, especially in the case of nosocomial infections.

In the last decade, carbapenem resistance in Acinetobacter spp. has been reported worldwide (3, 16, 23), mostly genospecies 1, the other members of this complex have been involved in nosocomial infections and have the ability to spread in hospitals (3, 9, 19, 23, 25, 26). Treatment of these nosocomial infections is becoming a problem because increasing resistance to antibiotics, especially in the case of nosocomial infections.

Acinetobacter calcoaceticus-A. baumannii (10). The S1 nuclease transforms supercoiled plasmids into linear molecules (1). Digested genomic DNA and plasmids were separated by gel electrophoresis (PFGE) with ApaI (Promega, Madrid, Spain) and determined that both strains had an imipenem MIC of >32 µg/ml (Table 1). The breakpoints for imipenem were those proposed by the Clinical and Laboratory Standards Institute (5).

PCR analysis with specific primers for all class D β-lactamases (Table 2) determined the presence of the blaOXA-58 gene in both strains; A. baumannii strain Ac057 was also positive for the blaOXA-51 gene. Additional primers were designed at the beginning and end of the blaOXA-58 gene (Table 2) to amplify the whole fragment. This gene presented 100% homology with the blaOXA-58 gene from A. baumannii listed in GenBank.

Plasmid DNA identification was attempted by using genomic mapping with I-CeuI (10) and by digestion with the S1 nuclease (1). I-CeuI cuts a 26-bp site in the rrl gene (23S rRNA), shearing the bacterial genome into an analyzable number of fragments (10). The S1 nuclease transforms supercoiled plasmids into linear molecules (1). Digested genomic DNA and plasmids were sepa-

<table>
<thead>
<tr>
<th>Strain</th>
<th>AMP</th>
<th>PIP</th>
<th>CEF</th>
<th>FOX</th>
<th>CAZ</th>
<th>FEP</th>
<th>SAM</th>
<th>IMP</th>
<th>MEM</th>
<th>CIP</th>
<th>GEN</th>
<th>TOB</th>
<th>AMK</th>
<th>DOX</th>
<th>AZM</th>
<th>RIF</th>
<th>PMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac057</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>256</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>>32</td>
<td>8</td>
<td>32</td>
<td><1</td>
<td>0.25</td>
<td>0.5</td>
<td><0.5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ac058</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>64</td>
<td>64</td>
<td>>32</td>
<td>8</td>
<td>64</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>16</td>
<td>128</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: AMP, ampicillin; PIP, piperacillin; CEF, cephalothin; FOX, cefoxitin; CAZ, ceftazidime; FEP, cefepime; SAM, ampicillin-sulbactam; IMP, imipenem; MEM, Meropenem; CIP, ciprofloxacin; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; DOX, doxycline; AZM, azithromycin; RIF, rifampin; PMB, polymyxin B.

* Corresponding author. Mailing address: Servei de Microbiologia, Centre de Diagnòstic Biomèdic, Hospital Clinic, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. Phone: 34 93 227 55 22. Fax: 34 93 227 93 72. E-mail: jvila@ub.edu.

Published ahead of print on 27 May 2008.
rated by PFGE (Fig. 1). Probes were marked with the PCR DIG probe synthesis kit (Roche, Barcelona, Spain), and detection was performed with anti-digoxigenin antibody conjugated to alkaline phosphatase and the color substrates NBT/BCIP (Roche) according to the manufacturer’s instructions. In Fig. 1a, the most intense bands would represent fragments of genomic DNA, and the faded bands represent plasmid DNA. Hybridization with probes for the \(\text{bla}_{\text{OXA-58}}\) gene (Fig. 1c) and the 23S rRNA gene (Fig. 1b) suggest that in both isolates the \(\text{bla}_{\text{OXA-58}}\) gene is present in a plasmid. With the S1 nuclease (Fig. 2a), the highest band would be the genomic DNA and the remaining bands would be linear plasmids. Hybridization with the probe for the OXA-58 gene (Fig. 2c) gives the same pattern as obtained with I-CeuI. The hybridization signal with the probe for the 23S rRNA gene was only observed in the undigested genomic DNA (Fig. 2b). Although conjugation experiments did not show any plasmid transfer between strains, Southern blot analysis suggests that the \(\text{bla}_{\text{OXA-58}}\) gene could be present in a plasmid in both strains, and the plasmid from \(A.\, baumannii\) is possibly different from the plasmid in the \(Acinetobacter\) genospecies 3 isolate.

In order to determine the genetic structure surrounding the \(\text{bla}_{\text{OXA-58}}\) gene, DNA from both isolates was digested with MspI “CCG” (Promega). The fragments obtained were autoligated overnight at 16°C using a T4 DNA ligase (Promega).

TABLE 2. Oligonucleotide sequences used in this study

<table>
<thead>
<tr>
<th>Nucleotide</th>
<th>Sequence (5’-3’)</th>
<th>Size (bp)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXA51-1</td>
<td>AACAAGCGCTATTTTTATTCGAG</td>
<td>641</td>
<td>Detection (\text{bla}_{\text{OXA-51}}) variants</td>
</tr>
<tr>
<td>OXA51-2</td>
<td>CCCATCCCCAACCACCTTTTT</td>
<td>641</td>
<td>Detection (\text{bla}_{\text{OXA-21}}) variants</td>
</tr>
<tr>
<td>OXA23-1</td>
<td>GATGTTGCTATAGTATCCTGCTG</td>
<td>825</td>
<td>Detection (\text{bla}_{\text{OXA-23}}) variants</td>
</tr>
<tr>
<td>OXA23-2</td>
<td>TCAACAACAATCAAGCACCTGT</td>
<td>453</td>
<td>Detection (\text{bla}_{\text{OXA-58}}) variants</td>
</tr>
<tr>
<td>OXA58-1</td>
<td>AGTATTGCGGCTCTTGTCT</td>
<td>843</td>
<td>Total gene amplification</td>
</tr>
<tr>
<td>OXA58-2</td>
<td>AACTTTCCCTGCTAATTTTG</td>
<td>843</td>
<td>Total gene amplification</td>
</tr>
<tr>
<td>OXA58-inv1</td>
<td>GAGGCAGAGGGAGGAGATCGTC</td>
<td>323</td>
<td>Genetic surrounding</td>
</tr>
<tr>
<td>OXA58-inv2</td>
<td>CTCACGACAAAGGCCCATACT</td>
<td>825</td>
<td>Genetic surrounding</td>
</tr>
<tr>
<td>OXA58-inv3</td>
<td>AAGCCATGCAAGCAGCTACA</td>
<td>825</td>
<td>Genetic surrounding</td>
</tr>
<tr>
<td>OXA58-inv4</td>
<td>CATCTCTTCACCTGTGCTGAA</td>
<td>825</td>
<td>Genetic surrounding</td>
</tr>
</tbody>
</table>

\(\text{OXA58-1TOT}\) and \(\text{OXA58-2TOT}\) were used for detecting the \(\text{bla}_{\text{OXA-58}}\) gene and also to generate the probe for Southern blot analysis.

FIG. 1. Plasmid identification by genomic mapping with I-CeuI. (a) PFGE gel. (b) Hybridization with probe for the 23S rRNA gene. (c) Hybridization with probe for the OXA-58. Lane 1, \(A.\, baumannii\) strain Ac058; lane 2, \(Acinetobacter\) genospecies 3 strain Ac057.

FIG. 2. Plasmid identification by digestion with S1 nuclease. (a) PFGE gel. (b) Hybridization with probe for the 23S rRNA gene. (c) Hybridization with probe for the OXA-58. Lane 1, \(A.\, baumannii\) strain Ac058; lane 2, \(Acinetobacter\) genospecies 3 strain Ac057.
The fragment of DNA containing the blaOXA-58 gene was used as a template for a PCR with inverse primers designed from the blaOXA-58/H11022 sequence number for the resistant strains can be erroneously classified as A. baumannii.

Nucleotide sequence accession number. The GenBank accession number for the blaOXA-58 in Acinetobacter genospecies 3 is EU642594.

This study has been supported by grant SGR050444 from the Departament d’Universitats, Recerca I Societat de la Informació de la Generalitat de Catalunya, Spain, and by the Spanish Ministry of Health (FIS 04/0068 to J.V.). This study was supported by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008), as well.

REFERENCES

