Antibiotic Susceptibility of *Waddlia chondrophila* in *Acanthamoeba castellanii* Amoebae

Geneviève Goy and Gilbert Greub*

Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland

Received 13 January 2009/Returned for modification 9 March 2009/Accepted 22 March 2009

Waddlia chondrophila is an emerging cause of miscarriage in bovines and humans. Given the strict intracellular growth of this *Chlamydia*-like organism, its antibiotic susceptibility was tested by amoebal coculture, cell culture, and real-time PCR. *W. chondrophila* was susceptible to doxycycline and azithromycin but resistant to β-lactams and fluoroquinolones.

Waddlia chondrophila is a *Chlamydia*-related bacterium belonging to the *Wadlliaeaceae* family (24), together with another species, *W. malaysiensis* (5). The two existing strains of *W. chondrophila* were isolated from aborted bovine fetuses (7, 15). More recently, a role of *W. chondrophila* in human miscarriage was identified (1). The pathogenic role of *W. chondrophila* in humans was further supported by its rapid growth within human macrophages (9). Moreover, like other agents of miscarriage such as *Castella burnettii* (23), *W. chondrophila* may also cause pneumonia (11). Consequently, we evaluated the antibiotic susceptibility of *W. chondrophila*. Given the strict intracellular growth of this *Chlamydia*-like organism, its antibiotic susceptibility was tested in amoebae and in Vero cells.

W. chondrophila strain ATCC VR-1470 and strain 2032/99 were cultured in *Acanthamoeba castellanii* grown in 75-cm² cell culture flasks (Corning, Corning, NY) at 32°C in peptone-yeast extract-glucose broth (10) until lysis of amoebae. Cell cultures were then harvested and filtered through a 5-μm filter (Millipore, Carrigtwohill, Ireland) to eliminate the remaining amoebae. One hundred microliters of this *W. chondrophila* inoculum diluted 1:100 was then inoculated onto *A. castellanii* in microplates containing about 10⁵ uninfected amoebae/well. Inoculated plates were centrifuged at 1,790 × g for 10 min and incubated at 32°C. Given the strict intracellular lifestyle of *Waddlia*, we did not use aminoglycosides that are often used to remove bacteria not internalized by eukaryotic cells (when another species, *Waddlia*, we did not use aminoglycosides that are often used to remove bacteria not internalized by eukaryotic cells (when

Two hours later, 100 μl of twofold serial dilutions of antibiotics were added. The antibiotics tested in this study were azithromycin (Sigma-Aldrich, Buchs, Switzerland), doxycycline (Clontech, Mountain View, CA), ampicillin (Roche, Zug, Switzerland), ceftriaxone (Sigma-Aldrich), ciprofloxacin (Sigma-Aldrich), and ofloxacin (Sigma-Aldrich). Growth was assessed at 0, 2, 4, and 7 days postinfection. To check antibiotic dilutions and efficacy, MICs for *Staphylococcus aureus* strain ATCC 29213 and *Escherichia coli* strain ATCC 25922 were determined according to the procedure recommended by the Clinical and Laboratory Standards Institute (6). The control strains exhibited the expected MICs.

To assess the growth of *W. chondrophila* in amoebal cells, we used a specific quantitative real-time TaqMan PCR. DNA was extracted with the QIAamp DNA kit (Qiagen, Hilden, Germany). PCRs were performed in a final volume of 20 μl including 10 μl of iTaq supermix (Bio-Rad, Rheinach, Switzerland), 200 nM forward primer (WadF3, 5'-CAGTCGAGACTTTCGCGAACAT-3'), 200 nM reverse primer (WadR3, 5'-CAAGTACGCTCATACTCCAG-3'), 100 nM probe (Wads, 5'-JOE-TGAATGAAAGGGCCCTTGGTCGT-BHQ-3'), 4.5 μl of water, and 5 μl of DNA. Cycling conditions were 2 min at 50°C, 10 min at 95°C, and 45 cycles of 15 s at 95°C and 1 min at 60°C. Amplification and detection of PCR products were performed with the ABI Prism 7000 (Applied Biosystems, Rotkreuz, Switzerland). The variability of this real-time PCR is about 0.5 log. Susceptibility was thus defined as a reduction in the number of DNA copies of more than 0.5 log in the presence of a given antibiotic concentration compared to the control growth curve without antibiotic.

W. chondrophila strains ATCC VR-1470 and 2032/99 exhibited doxycycline MICs of 4 μg/ml (Fig. 1A) and 1 μg/ml, respectively. Both strains were susceptible to azithromycin. Strain ATCC VR-1470 growth was inhibited by 0.125 μg/ml in most experiments. In additional experiments, growth was inhibited by 0.06 μg/ml (Fig. 1B). Thus, the MICs of azithromycin for this strain ranged between 0.06 and 0.125 μg/ml. *W. chondrophila* strain 2032/99 had an azithromycin MIC of 0.06 μg/ml. Both strains exhibited resistance to β-lactams (ampicillin, ceftriaxone), with MICs of ≥32 μg/ml, and fluoroquinolones (ciprofloxacin, ofloxacin), with MICs of ≥16 μg/ml (Fig. 1C, D, E, and F).

To confirm the results obtained with amoebae, we tested the antibiotic susceptibility of *W. chondrophila* strain VR-1470 in Vero cells. We used a procedure similar to that used for amoebae, except that infected Vero cells were suspended in RMPI medium-10% fetal calf serum and incubated at 37°C in a 5% CO₂ atmosphere. *W. chondrophila* was susceptible to azithromycin and doxycycline, with a MIC of 0.25 μg/ml for both antibiotics. Similarly to what was observed in amoebae, *W. chondrophila* was resistant to fluoroquinolones (MICs of ≥16

* Corresponding author. Mailing address: Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland. Phone: 41 21 314 49 79. Fax: 41 21 314 40 60. E-mail: gilbert.greub@chuv.ch.

† Published ahead of print on 30 March 2009.
μg/ml) and β-lactams (MICs of ≥32 μg/ml). The MIC of doxycycline was slightly higher in amoebae than in mammalian cells. This may be due to the presence of some efflux machinery in amoebae that protects these protists from chemical compounds present in water. For all other antibiotics, the MICs observed with both types of cells were similar, indicating that amoebae may represent a good alternative to mammalian cells to test the antibiotic susceptibility of strictly intracellular bac-

TABLE 1. MICs for *W. chondrophila* and other species belonging to the order *Chlamydiales* for comparison

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC (µg/ml) for:</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. chondrophila</td>
<td>Amoebae</td>
<td>Vero cells</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.06–0.125</td>
<td>0.25</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>1–4</td>
<td>0.25</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>>32</td>
<td>>32</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>>32</td>
<td>>32</td>
</tr>
</tbody>
</table>

^a MIC determined in amoebae.
^b MIC determined in mammalian cells.
^c MIC of amoxicillin.
^d ND, not determined.

FIG. 1. Susceptibility of *W. chondrophila* (ATCC VR-1470) to the antibiotics doxycycline (A), azithromycin (B), ampicillin (C), ciprofloxacin (D), ofloxacin (E), and ceftriaxone (F) as determined in amoebae. Growth was quantified with a *Waddlia*-specific quantitative real-time TaqMan PCR.
teria such as Parachlamydia acanthamoebae that do not grow in mammalian cells (18).

The susceptibility pattern of W. chondrophila is relatively similar to that obtained for other members of the order Chlamydiales (Table 1). Indeed, Chlamydia pneumoniae and Chlamydia trachomatis are both susceptible to macrolides and tetracyclines (4, 8, 14, 17, 25, 27, 28). However, unlike W. chondrophila, both of these chlamydiae are susceptible to quinolones (13, 14, 19, 20, 22). Interestingly, P. acanthamoebae is, like W. chondrophila, resistant to fluoroquinolones (3, 18). The resistance to fluoroquinolones was also observed for other Chlamydia-related bacteria, including Neochlamydia hartmanellae and Simkania negevensis (3). In the latter study, quinolone resistance in these amoeba-resistant bacteria could be explained by mutations in the quinolone resistance-determining regions (QRDR) of the DNA gyrase A (GyrA)- and topoisomerase IV (ParC)-encoding genes. We thus sequenced the QRDR of both genes for the two isomerase IV (ParC)-encoding genes. We thus sequenced the

In conclusion, azithromycin and doxycycline are active in vitro against both strains of W. chondrophila whereas quinolones and β-lactams are not. Resistance of W. chondrophila to penicillin was already documented in BT cells (7).

Consequently, azithromycin should be considered to treat infections due to this intracellular bacterium, given its excellent bioavailability and its documented activity against other members of the order Chlamydiales (17, 26). Macrolides might be an especially good first choice to prevent miscarriage, given the contraindication of using doxycycline during pregnancy. Doxycycline might, of course, be an alternative agent for non-pregnant patients. In the future, it will be important to test the activity of these antibiotics against W. chondrophila in vivo.

We thank Pfizer AG (Zürich, Switzerland) and the Swiss National Science Foundation (grant SNSF 3200BO-116445) for financial support. Gilbert Greub is supported by the Leenards Foundation through a career award entitled Bourse Leenards pour la relève académique en médecine clinique à Lausanne.

We also thank P. Tarr (Basel, Switzerland) for reviewing the manuscript.

REFERENCES

FIG. 2. QRDR of DNA gyrase A (GyrA) (A) and topoisomerase IV (ParC) (B) of W. chondrophila strains ATCC VR-1470 and 2032/99. P. acanthamoebae strains BN9 and Hall’s coccus, Protoschlamydia amoebophila UWE25, Chlamydomycia cavia, C. pneumoniae, C. trachomatis, and E. coli. The QRDR are delimited by black bars (E. coli numbering). GenBank accession numbers are in parentheses. Amino acid substitutions that may confer resistance to quinolones are in bold.

