Complementation of a *Saccharomyces cerevisiae* ERG11/CYP51 (Sterol 14α-Demethylase) Doxycycline-Regulated Mutant and Screening of the Azole Sensitivity of *Aspergillus fumigatus* Isoenzymes CYP51A and CYP51B

Claire M. Martel, Josie E. Parker, Andrew G. S. Warrilow, Nicola J. Rolley, Steven L. Kelly, and Diane E. Kelly*

Institute of Life Science and School of Medicine, Swansea University, Swansea SA2 8PP, Wales, United Kingdom

Received 12 March 2010/Returned for modification 17 July 2010/Accepted 15 August 2010

Aspergillus fumigatus sterol 14α-demethylase isoenzymes CYP51A and CYP51B were heterologously expressed in a *Saccharomyces cerevisiae* mutant (YUG37-erg11), wherein native ERG11/CYP51 expression is controlled using a doxycycline-regulatable promoter. When cultured in the presence of doxycycline, recombinant YUG37-ppcp51A and YUG37-ppcp51B yeasts were able to synthesize ergosterol and grow; a control strain harboring reverse-oriented cyp51A could not. YUG37-ppcp51A and YUG37-ppcp51B constructs showed identical sensitivity to itraconazole, posaconazole, clotrimazole, and voriconazole. Conversely, YUG37-pccp51A withstood 16-fold-higher concentrations of fluconazole than YUG37-pccp51B (8 and 0.5 μg ml⁻¹, respectively).

Azoles are used for treatment of *Aspergillus* infections (11, 13) and also in prophylactic drug regimens for immunocompromised patients (8). The emergence (4, 14, 30, 31, 32) and potential for spread (2) of azole-resistant *Aspergillus* (hereafter focusing on *A. fumigatus*) have highlighted the need to develop diagnostic tools (6, 9) and novel antifungal agents focusing on *Aspergillus fumigatus* potential for spread (2) of azole-resistant ergosterol biosynthesis and/or resistance phenotypes observed has been reasoned that the relative importance of each for -demethylase-like enzymes (26), it discoveries in *Aspergillus fumigatus* sterol 14α-demethylase, the CYP51 protein target of azoles, has attracted particular attention. Since the discovery that *A. fumigatus* possesses two genes (cyp51A and cyp51B) encoding sterol 14α-demethylase-like enzymes (26), it has been reasoned that the relative importance of each for ergosterol biosynthesis and/or resistance phenotypes observed in the clinic might differ. To date, the most prevalent mechanism of azole resistance in *A. fumigatus* appears to be the modification of CYP51A (5, 22, 25, 27, 28). Missense mutations in cyp51A are associated with cross-resistance, elevated MICs to azoles, and increased CYP51A expression (25, 27).

Research has demonstrated the essentiality of the erg11 gene family (cyp51A and cyp51B) in *A. fumigatus* despite neither member being essential individually (15). It has also been postulated that CYP51A might provide the major 14α-demethylase activity required for growth in *A. fumigatus* and that CYP51B may serve a redundant or alternative function under certain growth conditions (28). However, despite the research interest surrounding *A. fumigatus*, it has not yet been shown that cyp51A and cyp51B both encode functional sterol 14α-demethylase. We investigated the use of a doxycycline-regulated *Saccharomyces cerevisiae* erg11/cyp51 (sterol 14α-demethylase) mutant to heterologously express *A. fumigatus* CYP51A and CYP51B in order to demonstrate complementation for ergosterol biosynthesis. The azole sensitivity of yeast transformants expressing *A. fumigatus* CYP51A and CYP51B was then screened.

Plasmid and strain construction. Genes encoding *A. fumigatus* isoenzymes CYP51A and CYP51B (EXPASY accession no. Q4WNT5 and Q96W81) were synthesized without introns as previously described (34). The following gene-specific forward (F) and reverse (R) primers for cyp51A and cyp51B were used to amplify both genes for direct T/A ligation into the *S. cerevisiae* yeast expression vector pYES2.1 TOPO (Invitrogen): cyp51AF (5′-ATGTGCCCAGTCGTGCTG-3′), cyp51AR (5′-CTATTGGAGTGTCTTGCG-3′), cyp51BF (5′-ATGGGTCTAGGACCGCTTCT-3′), and cyp51BR (5′-CTACGCTTTAGTGCG-3′). DNA polymerase with proofreading capacity (High Fidelity Expand; Roche) was used for all PCRs. The *S. cerevisiae* host (YUG37-erg11), wherein native erg11/cyp51 expression is controlled using a doxycycline-regulatable promoter (10, 33), was first transformed with pYES2.1 vector containing a reverse-oriented cyp51A gene insertion to create the control strain (YUG37-pCTRL). Experimental yeast transformants harboring cyp51A and cyp51B plasmid DNA (hereafter YUG37-pccp51A and YUG37-pccp51B) and YUG37-pCTRL were all selected and maintained using glucose-based yeast minimal (gm l⁻¹) medium (Difco) containing 1.34% yeast nitrogen base without amino acids, 2% glucose, leucine and

* Corresponding author. Mailing address: Institute of Life Science and School of Medicine, Swansea University, Swansea SA2 8PP, Wales, United Kingdom. Phone: 44 1792 292207. Fax: 44 1792 503430. E-mail: D.Kelly@swansea.ac.uk.

† Published ahead of print on 23 August 2010.
tryptophan (both 100 mg liter$^{-1}$), and 2% agarose (as required) (wt/vol).

Heterologous expression. For complementation experiments (Fig. 1), medium to induce plasmid expression ($gal/rafYM$) was prepared as above except for the replacement of glucose with galactose and raffinose (2%) and the addition of 5 gm liter$^{-1}$ doxycycline (Sigma-Aldrich). Single colonies from YUG37-p$cyp51A$, YUG37-p$cyp51B$, and YUG37-pCTRL transformation plates (all constructs in triplicate) were used to inoculate 15-ml volumes of $gal/rafYM$; the resulting cultures were incubated for 72 h (30°C, 180 rpm) prior to checks for cell growth and subsequent sterol analyses. Sterol analysis of the YUG37-pCTRL construct cultured using $gal/rafYM$ without doxycycline ($gal/rafYM$) was also undertaken.

Sterol analysis. The sterol composition of YUG37-p$cyp51A$, YUG37-p$cyp51B$, and YUG37-pCTRL constructs cultured using $gal/rafYM$ medium (Table 1) was determined by gas chromatography mass spectrometry (GC-MS) as previously described (23). Trimethylsilyl (TMS)-derivatized sterols were identified with reference to retention times and fragmentation spectra for known standards. GC-MS data files were analyzed using Agilent software (MSD enhanced ChemStation, Agilent Technologies Inc.) for derivation of integrated peak areas.

Azole sensitivity assays. The sensitivity of YUG37-p$cyp51A$ and YUG37-p$cyp51B$ constructs to selected azoles was assayed using standard CLSI M27-A2 broth dilution methodology, except for the use of $gal/rafYM$ induction medium, initial inoculums equivalent to 2.5×10^5 cells ml$^{-1}$, and final azole concentrations of fluconazole (0.031 to 16 μg ml$^{-1}$), clotrimazole, itraconazole, and posaconazole (0.004 to 2.0 μg ml$^{-1}$), and voriconazole (0.0005 to 0.25). Owing to its inability to grow in $gal/rafYM$ medium, azole MIC values for the YUG37-

![FIG. 1. Example GC-MS chromatograms for the YUG37-pCTRL construct (A) and the complementing YUG37-p$cyp51A$ construct (B) cultured using $gal/rafYM$ induction medium. 1, ergosterol; 2, 14a-methyl fecosterol; 3, 4,14a-dimethyl cholesta 8,24-dienol; 4, 14a-methyl ergosta 8,24(28) dien-3β-6a-diol; 5, lanosterol and/or obtusifoliol.]

<table>
<thead>
<tr>
<th>Construct</th>
<th>Mean % of sterol (SD) in indicated construct</th>
<th>Medium</th>
<th>Mean % of sterol (SD) in indicated construct</th>
<th>Mean % of sterol (SD) in indicated construct</th>
<th>Mean % of sterol (SD) in indicated construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>YUG37-p$cyp51A$</td>
<td>$gal/rafYM$ 40.8 (2.0) 2.0 (1.3) 2.6 (1.7) 20.5 (3.1) 34.1 (4.4) 80.0 0.004 0.063 0.125</td>
<td>YUG37-p$cyp51B$</td>
<td>$gal/rafYM$ 39.5 (3.1) 1.7 (0.9) 2.9 (1.3) 10.5 (5.6) 45.4 (3.8) 0.5 0.016 0.004 0.063 0.125</td>
<td>YUG37-pCTRL</td>
<td>$gal/rafYM$ 4.0 (2.2) 1.9 (2.2) 3.3 (1.1) 51.1 (3.3) 40.6 (4.8) — — — —</td>
</tr>
<tr>
<td>YUG37-pCTRL</td>
<td>$gal/rafYM$ 80 (3.3) 15.5 (1.1) 4.0 (1.3) 0.25 0.016 0.004 0.063 0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mean percentage ± SD of sterol composition of experimental constructs. *Sum of all 14a-demethylated sterols (except ergosterol) and GC-MS retention times.

<table>
<thead>
<tr>
<th>MIC (μg ml$^{-1}$)</th>
<th>MIC (μg ml$^{-1}$)</th>
<th>MIC (μg ml$^{-1}$)</th>
<th>MIC (μg ml$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>0.006</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Clotrimazole</td>
<td>0.006</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>0.0125</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>0.005</td>
<td>0.003</td>
<td>0.001</td>
</tr>
</tbody>
</table>

TABLE 1. Heterologous expression of $A. fumigatus$ isoenzymes CYP51A and CYP51B in an $S. cerevisiae$ ERG11/CYP51 (sterol 14H_{25}-demethylase) mutant
pCTRL construct were determined using gal/rafYM$^{-}$dox. Microtiter plates were incubated at 30°C, and MIC values (Table 1) were scored after 72 h. Azole MICs were determined as the minimum drug concentration yielding at least 80% inhibition of growth compared with growth in control wells.

The YUG37-pcp51A and YUG37-pcp51B constructs were both cultural using gal/rafYM$^{-}$dox. The ergosterol content of each (Table 1) indicates that A. fumigatus CYP51A and CYP51B both complemented S. cerevisiae sterol 14a-demethylase function with comparable efficiency. YUG37-pCTRL cultures did not grow in gal/rafYM$^{-}$dox medium, as evidenced by GC-MS chromatograms (Fig. 1A). Briefly, 14a-methylated sterols comprised >95% of the total sterol fraction in YUG37-pCTRL as a result of downregulation of the endogenous S. cerevisiae cyp51A. That the fungistatic sterol 14a-methyl ergosta 8,24(28)-dien-3β-ol (17, 35) comprised >50% of gal/rafYM$^{-}$dox cultured YUG37-pCTRL (Table 1) is consistent with the failure of the reverse-oriented cyp51A gene to complement and accounts for its inability to grow. Thesterol (specifically high ergosterol) content of the YUG37-pCTRL construct cultured in the absence of doxycycline is typical of wild-type S. cerevisiae.

MIC values from azole sensitivity assays with YUG37-pcp51A and YUG37-pcp51B (Table 1) agree with literature regarding the efficacy of azoles for general treatment of A. fumigatus infections. Specifically, the potency of voriconazole and posaconazole (in this study, MIC values of 0.034 and 0.065 μg ml$^{-1}$, respectively) is well documented (8, 11, 13, 24).

It is possible that, besides variation in the structural properties of A. fumigatus CYP51A and CYP51B, differences in gene expression could contribute to the altered fluconazole susceptibility of the YUG37-ppcp51A and YUG37-pcp51B constructs. However, the consistency and value of this yeast expression system for evaluating mutations in CYP51 from the fungal wheat pathogen Mycosphaerella graminicola has already been demonstrated (3).

MIC values from azole sensitivity assays with YUG37-pCTRL construct cultured using gal/rafYM$^{-}$dox (Table 1) demonstrate the susceptibility of the endogenous yeast CYP51 to all azoles; they also indicate the potential importance of A. fumigatus CYP51A and CYP51B for resistance to both fluconazole (12) and itraconazole (4, 7).

It is possible that, besides variation in the structural properties of A. fumigatus CYP51A and CYP51B, differences in gene expression could contribute to the altered fluconazole susceptibility of the YUG37-ppcp51A and YUG37-pcp51B constructs. However, the consistency and value of this yeast expression system for evaluating mutations in CYP51 from the fungal wheat pathogen Mycosphaerella graminicola has already been demonstrated (3). It is also significant that previous experimental work with Candida albicans CYP51 has indicated that expression levels in transformants differing by more than 1,000-fold do not alterazole MICs more than 5-fold (20). Hence, differences in the expression of CYP51A and CYP51B are unlikely to be responsible for azole MIC values observed in the present study.

Results from this study unequivocally demonstrate that A. fumigatus cyp51A and cyp51B both encode functional sterol 14a-demethylase. Given the complicating presence of both cyp51A and cyp51B in A. fumigatus and (owing to the efficiency of A. fumigatus DNA repair mechanisms) the challenge of creating stable gene knockout strains, use of the nonpathogenic S. cerevisiae sterol 14a-demethylase mutant to complement and assay the individualazole sensitivity of CYP51A and CYP51B constitutes a model system through which the screening of novel azole antifungals might be undertaken in the future.

This research was supported by the EU FP6 project EURESFUN (European Resistance Fungal Network) and analytical facilities provided by the EPSRC National Mass Spectrometry Service Centre (Swansea University, United Kingdom). We thank Schering-Plough Ltd. (Welwyn Garden City, United Kingdom) for the kind gift of the posaconazole used in this study.

REFERENCES

