Emergence of Linezolid-Resistant Mutants in a Susceptible-Cell Population of Methicillin-Resistant Staphylococcus aureus†‡

Yurika Ikeda-Dantsuji,1 Hideaki Hanaki,1* Taiji Nakae,1 Yoshio Takesue,2 Kazunori Tomono,3 Junichi Honda,4 Katsunori Yanagihara,5 Hiroshige Mikamo,6 Kunihiko Fukuchi,7 Mitsuo Kaku,8 Shigeru Kohno,9 and Yoshihito Niki10

Laboratory for Antimicrobial Agents, Kitasato University, Tokyo,1 Department of Infection Control and Prevention, Hyogo College of Medicine, Hyogo,2 Department of Clinical Infectious Disease, Osaka University School of Medicine, Osaka,3 Department of Infection Control, St. Mary’s Hospital, Fukuoka,4 Department of Laboratory Medicine, Nagasaki University School of Medicine, Nagasaki,5 Department of Infection Control and Prevention, Aichi Medical University, Aichi,6 Department of Laboratory Medicine, Showa University School of Medicine, Tokyo,7 Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Miyagi,8 Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki,9 and Department of Clinical Infectious Disease, Showa University School of Medicine, Tokyo,10 Japan

Received 9 November 2010/Returned for modification 8 January 2011/Accepted 22 February 2011

Methicillin-resistant Staphylococcus aureus with a MIC of linezolid of 4 μg/ml, isolated from a patient who had undergone unsuccessful linezolid therapy, yielded linezolid-resistant mutants in blood agar at 48 h of incubation. The resistant clones showed a MIC of linezolid ranging from 8 to 64 μg/ml and accumulated the T2500A mutation(s) of the rRNA genes. Emergence of these resistant clones appears to be facilitated by a cryptic mutation or mutations associated with chloramphenicol resistance.

Infection by methicillin-resistant Staphylococcus aureus (MRSA) is a serious problem in hospitals and communities because this bacterium shows resistance to major chemotherapeutic agents. To combat MRSA infections, powerful antibiotics, such as vancomycin and linezolid, have been developed. However, vancomycin-resistant MRSA has emerged worldwide. The recently developed antimicrobial agent linezolid is probably one of a few choices for the treatment of vancomycin-resistant MRSA. Most S. aureus isolates, including MRSA, are found to be linezolid susceptible, with a breakpoint of 4 μg/ml (3, 4). However, the emergence of linezolid-resistant MRSA with MICs of ≥4 μg/ml has been reported recently (1, 5, 6, 8, 11, 12). The resistant cells were found to have the G2576T (5, 11, 12) or T2500A (8) mutation in the gene(s) encoding the 23S rRNA. Moreover, some of the mutants accumulated the mutation in multiple copies of the rRNA genes, rendering the cells increasingly resistant to linezolid (2, 6, 9). Other types of linezolid resistance reported are enzymatic methylation of the 23S rRNA by chloramphenicol methyltransferase (5) and a mutation in the ribosomal protein genes encoding L3 and L4 (7, 13). We report here that linezolid-resistant cells, isolated from a patient whom linezolid therapy was unsuccessful, emerged from the susceptible cell population.

(A part of this work was presented as poster A-037 at the 109th General Meeting, American Society for Microbiology, Philadelphia, PA, 2009.)

A patient with pyogenic spondylitis suffered from MRSA bacteremia and was treated orally with 600 mg of linezolid twice a day for 68 consecutive days. However, S. aureus cells were frequently isolated from the blood, resulting in the failure of linezolid chemotherapy. The MRSA isolates from the preand post-linezolid blood (referred to as HG503pre and HG503post, respectively) had linezolid MICs of 2 and 4 μg/ml, respectively, determined by the Clinical and Laboratory Standards Institute (CLSI) method (Table 1) (4). Therefore, both strains were classified as linezolid-susceptible MRSA. The relatedness of these strains was confirmed by comparing the pulsed-field gel electrophoretograms of their chromosomal DNA treated with SmaI (not shown).

Since the MIC of linezolid in HG503post was close to the border of the breakpoint and that of chloramphenicol was 4-fold higher than that of HG503pre, we wondered whether or not this strain was genuinely linezolid susceptible. Thus, the linezolid susceptibility of HG503post was examined again using the Etest (AB Biodisk, Solna, Sweden). The MIC of linezolid in Mueller-Hinton (MH) agar was 0.19 μg/ml at 24 h of incubation, while those in MH agar supplemented with 5% sheep blood (MH-blood agar) appeared to be 1.5 and 4 μg/ml at 24 and 48 h, respectively. An important observation made was that many microcolonies appeared in the clear inhibitory zone in the MH-blood agar at 48 h (Fig. 1Ab). This result suggested that the linezolid-resistant mutants spontaneously emerged from the susceptible cell population, HG503post, while this phenomenon was not seen in HG503pre (Fig. 1Aa).

To test whether or not the resistant cells appeared only in the presence of linezolid, HG503post cells were streaked on antibiotic-free MH-blood agar and 20 randomly selected microcolonies were subjected to the Etest. The result showed that all the subclones exhibited microcolonies in the clear inhibitory

† Supplemental material for this article may be found at http://aac.asm.org/.

‡ Published ahead of print on 28 February 2011.
zone without exception, suggesting that they were segregated from a single susceptible cell (Fig. 1Ac and 1Ad).

To test the homogeneity of the HG503 cells, we analyzed the population distribution of HG503pre and HG503post in terms of linezolid susceptibility. The cells grown in antibiotic-free MH broth were plated on brain heart infusion (BHI) agar impregnated with various concentrations of linezolid. The MIC for the HG503post population ranged from 1 to 16 μg/ml of linezolid (Fig. 1Bb), while that for HG503pre was restricted to within 1 to 2 μg/ml (Fig. 1Ba). These data suggest that the emergence of a resistant subpopulation in HG503post is due to a cryptic mutation or mutations. The colonies that appeared at the linezolid concentrations of 4 and 8 μg/ml in BHI agar were designated HG503post-4R and HG503post-8R, respectively.

Clinically, it is important to know how early such resistant mutants emerge during linezolid treatment. An in vitro experiment was designed to simulate such a situation by exposing HG503post to medium containing linezolid concentrations one-fourth the MIC for 14 consecutive days (Fig. 2). The MIC of linezolid progressively increased to 8, 16, 64, and 128 μg/ml by the fourth, fifth, sixth, and seventh days, respectively, as determined by the broth dilution method. The strain on the seventh day was designated HG503post-7D. This experiment revealed that once the HG503post-like cell appeared, cells with high linezolid resistance emerged within a short time in

TABLE 1. Properties of the linezolid-resistant clones isolated from HG503post

<table>
<thead>
<tr>
<th>Strain</th>
<th>Copy no. of rRNA gene<sub>a</sub> with T<sub>2500A</sub> mutation</th>
<th>MIC<sub>b</sub> (μg/ml)</th>
<th>Doubling time<sub>c</sub> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG503pre</td>
<td>None</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>HG503post</td>
<td>None</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>HG503post-4R</td>
<td>2</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>HG503post-8R</td>
<td>3</td>
<td>16</td>
<td>128</td>
</tr>
<tr>
<td>HG503post-7D</td>
<td>4</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>

^a Both HG503pre and HG503post had five copies of the rRNA gene.

^b MICs of antibiotics were determined by the CLSI method. Abbreviations: LZD, linezolid; CHL, chloramphenicol. MICs of other antibiotics were presented in the supplemental material.

^c Doubling times were calculated from the growth curves in MH broth as shown in the supplemental material.
the presence of a sub-MIC concentration of linezolid. A sim-
lar experiment with HG503pre revealed that the MIC of lin-
ezolid increased only 2-fold.

The MICs of linezolid in HG503post, HG503post-4R, HG503post-8R, and HG503post-7D appeared to be 4, 8, 16, and 64 μg/mL, respectively (Table 1) as determined by the CLSI method. MICs of other antibiotics were comparable among these strains, except for that of chloramphenicol (see the supplemental material). Cross-resistance between chlor-
amphenicol and linezolid was reported earlier (10). Acquisition
of resistance to chloramphenicol by the HG503post isolate is
further evidence for a mutation that could facilitate the emer-
gence of linezolid resistance.

Since the major factor associated with linezolid resistance
was reported to be a chromosomal mutation in the gene(s)
encoding the domain V region of the 23S rRNA, we analyzed
this region by PCR (refer to the supplemental material). The
following results were obtained (Table 1). (i) Both HG503pre
and HG503post cells had a domain V sequence identical with
that of the reference strain. (ii) The HG503post-4R, HG503post-8R, and HG503post-7D cells had the T2500A sub-
stitution in two, three, and four copies, respectively, of the
rRNA genes. These results revealed that the MIC of linezolid
was closely associated with the number of mutations in the 23S
rRNA genes.

In summary, linezolid treatment failure was associated with
a heterogeneous resistant isolate. Although this isolate ap-
peared to be susceptible by standard susceptibility test meth-
ods, a linezolid-resistant subpopulation was detected by Etest
after a 48-h incubation or with passage in a sub-MIC level of
linezolid. Characterization of resistant clones showed that they
had mutations in multiple copies of the 23S rRNA gene. Al-
though differences in growth rates were observed for more
resistant clones than for the parent posttreatment isolate (Ta-
ble 1 and supplemental material), these differences were rela-
tively small. Moreover, testing of individual colonies of the
posttreatment isolate makes it unlikely that a mixed culture in
the original posttreatment isolate accounted for the presence
of the resistant subpopulation. A cryptic mutation (or muta-
tions), outside domain V of rRNA and associated with a higher
MIC of chloramphenicol, may account for this heterogeneous
phenotype and facilitate the selection and emergence of
higher-level resistant mutants with rRNA mutations.

REFERENCES
resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.
Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability,
1572.
antimicrobial susceptibility tests for bacteria that grow aerobically. Approved
standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
isolated from 2006 through 2008 at six hospitals in Japan. J. Infect. Che-
mother. 17:45–51.
Staphylococcus aureus identified through selection with the oxazolidinones
5274.
aureus isolates associated with a T2500A mutation in the 23S rRNA gene
acterization and stability of resistant phenotype. J. Infect. Dis. 186:1603–
1607.
clinical strain of meticillin-resistant Staphylococcus aureus resistant to the
11. Tsiodras, S., et al. 2001. Linezolid resistance in a clinical isolate of Staphy-
macrolides, and chloramphenicol in ribosomal protein L4 of the pneumo-