Synergistic Effect of Antituberculosis Drugs and Azoles In Vitro against *Histoplasma capsulatum* var. *capsulatum*\(^\dagger\)\(^\ddagger\)

Rossana de Aguiar Cordeiro,1,2* Franciscas Jakelyne de Farias Marques,1,2 Raimunda Sâmia Nogueira Brilhante,1,2 Kylvia Rocha de Castro e Silva,1,2 Charles Ielpo Mourão,1 Érica Pacheco Caetano,1,2 Maria Auxiliadora Bezerra Fechine,1 Joyce Fonteles Ribeiro,1,2 Débora de Souza Collares Maia Castelo-Branco,1,2 Rita Amanda Chaves de Lima,1,2 Jacó Ricarte Lima Mesquita,3 André Jales Monteiro,4 Francisco Airtón Castro Rocha,5 Marcos Fábio Gadelha Rocha,1,2,6 and José Júlio Costa Sidrim1,2

Medical Mycology Specialized Center, Federal University of Ceará, Fortaleza, Ceará, Brazil; Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil; São José Hospital, Fortaleza, Ceará, Brazil; Department of Statistics, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; and Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil.

Received 23 October 2010/Returned for modification 25 January 2011/Accepted 20 May 2011

This study evaluated in vitro interactions of antituberculosis drugs and triazoles against *Histoplasma capsulatum* var. *capsulatum*. Nine drug combinations, each including an antituberculosis drug (isoniazid, pyrazinamide, or ethambutol) plus a triazole (itraconazole, fluconazole, or voriconazole), were tested against both growth forms of *H. capsulatum*. Stronger synergistic interactions were seen in isoniazid or pyrazinamide plus triazoles for the mold form and ethambutol plus voriconazole for the yeast-like form. Further studies should evaluate these combinations in vivo.

Previously we demonstrated the inhibitory effect of some antituberculosis drugs alone or combined with antifungals against the pathogen *Coccidioides posadasii* (5, 6). Stronger synergistic interactions were seen in the combinations including ethambutol (ETB) plus triazoles as well as pyrazinamide (PZA) plus itraconazole (ITR). Based on these results, the purpose of this study was to investigate the effect of these combinations against the dimorphic pathogen *Histoplasma capsulatum* var. *capsulatum*—the etiological agent of American histoplasmosis, regarded as the most frequent systemic fungal infection worldwide (1, 7) and an important opportunistic infection among AIDS patients (7, 8, 13, 14). The emergence of resistance to fluconazole (FLC) as a cause of failure during treatment of histoplasmosis in patients with AIDS indicates a need for studies seeking new therapeutic options for this mycosis (13).

A total of 18 strains of *Histoplasma capsulatum* var. *capsulatum* (henceforth called *H. capsulatum*) isolated in Brazil were included in the study. Most of the strains were recovered from AIDS patients with histoplasmosis and were isolated from bone marrow (n = 10) and peripheral blood (n = 6). Two strains isolated from cutaneous ulcers of domestic felines with disseminated histoplasmosis were also tested. The strains belong to the fungal collection of the Specialized Medical Mycology Center (CEMM) of the Federal University of Ceará, Brazil. All procedures were performed inside a biosafety level 3 laboratory.

For macrobroth testing, inoculum preparation was carried out as described by Li et al. (9) with minor modifications. First, the *H. capsulatum* strains were grown on brain heart infusion agar (BHI; BD Diagnostics) at 28°C for 7 days. Sterile 0.9% saline was added to the agar slant, and the cultures were gently scraped with cotton swabs. The suspensions were read at 530 nm and adjusted to 90 to 95% transmittance. The suspension was then diluted 1:10 with RPMI 1640 medium (Sigma Chemical Co.) containing L-glutamine and without sodium bicarbonate and buffered to pH 7.0 with 0.165 M MOPS (morpholinepropanesulfonic acid; Sigma Chemical Co.) to obtain an inoculum of approximately 0.5 × 10^3 to 2.5 × 10^3 CFU·ml^-1. Inoculum preparation for microbroth tests was performed as described by Brilhante et al. (3). The suspensions were diluted with RPMI medium buffered to pH 7.0 with MOPS to obtain an inoculum of approximately 0.5 × 10^3 to 2.5 × 10^4 CFU·ml^-1. The density of each inoculum was checked by quantitative colony counts on Sabouraud dextrose agar (9).

Stock solutions of itraconazole (ITR) (Janssen Pharmaceuticals, Belgium) and voriconazole (VRZ) (Pfizer Pharmaceuticals) were prepared in dimethyl sulfoxide (DMSO; Sigma Chemical Co.). Fluconazole (FLC) (Pfizer Pharmaceuticals) was prepared in distilled water (CLSI standard published in 2002). Ethambutol (ETB) (Iquego, Brazil) and isoniazid (INH) and pyrazinamide (PZA) (Lafape, Brazil) were prepared in DMSO (5). Serial 2-fold dilutions of each antimicrobial agent were prepared with RPMI medium.

First the strains were tested against each drug alone to determine the MIC (4). The drug concentrations tested ranged as follows: ITC, 0.0001 to 0.0625 µg/ml; FLC, 0.9765 to 500 µg/ml; VRZ, 0.00195 to 1.00 µg/ml; ETB, 195 to 12,500 µg/ml; INH, 18 to 300 µg/ml; and PZA, 195 to 6,250 µg/ml (6, 9, 10).
Broth macrodilution tests based on the CLSI reference document M38-A2 (4) were used to determine the MIC for *H. capsulatum* mold form. The results were read visually, and MIC endpoints were determined after 7 days of incubation at 35°C. Broth microdilution assays were performed for *H. capsulatum* yeast-like form as described by Nakai et al. (10), and the readings were conducted after 4 days. All tests were repeated at least twice, and every fungal strain was tested in duplicate. MICs of the azoles and antituberculosis drugs were defined as the lowest drug concentration that caused 80% inhibition of visible fungal growth (5, 6, 9, 10). The minimum fungicidal concentration (MFC) was determined as described by Li et al. (9), with minor modifications. The lowest concentration that inhibited fungal growth completely was determined after seeding 100 µl of the fungal suspension at concentrations above the MIC onto BHI agar for 15 days at 35°C. Quality control strains *Candida parapsilosis* ATCC 22019 and *Candida krusei* ATCC 6258 were included in each batch of tests. In addition, a *Coccidioides posadasii* strain (CEMM 01-6-085), previously tested against the antituberculosis drugs (5), was included.

Checkerboard synergy testing was performed in duplicate in macrodilution and microdilution assays for analysis of filamentous and yeast forms, respectively. Positive growth controls were performed in RPMI medium without antimicrobials. Combinations included ETB plus ITC, ETB plus FLC, ETB plus VRZ, INH plus ITC, INH plus FLC, INH plus VRZ, PZA plus ITC, PZA plus FLC, and PZA plus VRZ. Combinations were formed with each drug at the following concentrations: ITC, 0.0078–0.0625; FLC, 31.25–250; VRZ, 31.25–250; ETB, 3,130–12,500; INH, 80–300; and PZA, 780–6,250. The MIC of each drug in combination was determined after 7 days of incubation at 35°C. Broth microdilution assays were performed for *H. capsulatum* yeast-like form as described by Nakai et al. (10), and the readings were conducted after 4 days. All tests were repeated at least twice, and every fungal strain was tested in combination. Regard-
ing antituberculosis drugs, lower MFC values were seen with combinations formed by VRZ in both filamentous and yeast-like forms.

For many years, chronic cavitary histoplasmosis was misdiagnosed as tuberculosis and patients suffering from this mycosis received empirical antituberculosis therapy without success (12). Our results make us believe that although ETB, INH, and PZA have a slight effect on *H. capsulatum* growth in vitro, the concentration necessary for fungal killing is much higher than the peak plasma concentration of each drug. In the present study, when the antituberculosis drugs were combined with azoles, synergistic interactions were observed. As a result, lower doses of each drug were necessary for fungal inhibition. Fungal growth was inhibited by INH plus FLC and by PZA plus azoles at concentrations near peak plasma levels of these antituberculosis drugs (2).

Previous studies have shown that combinations formed by ETB and triazoles and by PZA and ITC were the best against *C. posadasii* (6). The results here show that combinations formed by ETB with triazoles have a better inhibitory effect against *H. capsulatum*. This preliminary study reveals worthwhile results and suggests that these antituberculosis drugs may act on molecular targets expressed mainly by dimorphic fungi. It is well known that antituberculosis drugs act on specific targets in mycobacterial metabolism. Isoniazid, for instance, acts by inhibition of both the proteins enoyl-acyl reductase and β-ketoacyl acyl carrier protein (ACP)-synthase I, resulting in inhibition of mycolic acid biosynthesis (15). Therefore, we suppose that isoniazid may also act on enzymes of *H. capsulatum* fatty acid synthase complex, such as 3-oxoacyl synthase, which, in turn, may hamper the biosynthesis of lipids from plasmatic membrane. For the other antituberculosis drugs evaluated in this study,

Table 1. MICs and MFCs for antifungals and antituberculosis drugs against *H. capsulatum* strains in filamentous and yeast-like forms

<table>
<thead>
<tr>
<th>Antimicrobial drug</th>
<th>F</th>
<th>Y</th>
<th>F</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC range (µg/ml)</td>
<td>MIC range (µg/ml)</td>
<td>MIC (geometric mean, µg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITC</td>
<td>0.0078–0.0625</td>
<td>0.0312–0.0625</td>
<td>0.0039–0.0312</td>
<td>0.0039–0.0312</td>
</tr>
<tr>
<td>FLC</td>
<td>31.25–250</td>
<td>31.25–62.5</td>
<td>0.016–0.25</td>
<td>0.0078–0.0312</td>
</tr>
<tr>
<td>VRZ</td>
<td>31.25–250</td>
<td>0.0312–0.125</td>
<td>3.9–31.25</td>
<td>0.0078–0.0312</td>
</tr>
<tr>
<td>ETB</td>
<td>3,130–12,500</td>
<td>1,560–6,250</td>
<td>390–1,560</td>
<td>3,880</td>
</tr>
<tr>
<td>INH</td>
<td>80–300</td>
<td>>450</td>
<td>40–300</td>
<td>75–150</td>
</tr>
<tr>
<td>PZA</td>
<td>780–6,250</td>
<td>>2,340</td>
<td>550–3,130</td>
<td>190–780</td>
</tr>
</tbody>
</table>

Abbreviations: F, filamentous; Y, yeast-like; ITC, itraconazole; FLC, fluconazole; VRZ, voriconazole; EMB, ethambutol; INH, isoniazid; PZA, pyrazinamide.
we believe that binding sites analogous to those in mycobacteria may be found in the fungal mitochondria, resulting in inhibitory effect. Further investigations are required to evaluate these hypotheses, as they could lead to discovery of promising antifungal targets.

Because of the pharmacological properties of pyrazinamide, we supposed that this drug may cause stronger fungal inhibition in vitro at pH 5.0. We had even run a test with RPMI buffered at pH 5.0, but unfortunately, the *H. capsulatum* strains showed poor growth at this pH, making antifungal testing not feasible. Although some experts have performed susceptibility tests with *H. capsulatum* strains at 37°C (13) or 25°C (10), we observed that *H. capsulatum* strains tested in this study showed optimum growth rate at 35°C. When cultured in high-nutrient media at 37°C, some cells set up a budding process and formed yeast-like structures. Therefore, susceptibility tests were performed at 35°C.

The results in this study add further evidence to the antifungal potential of associations formed by antituberculosis drugs and azoles. Further studies should be performed in order to determine the molecular mechanisms related to the antifungal activity observed, as well the therapeutic and/or prophylactic potential of these combinations in vivo against *H. capsulatum*.

This work was supported by CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (process 475652/2008-8) and PNPD/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (process 2103/2009).

REFERENCES

TABLE 2. MFC, MIC, FICI, and interaction effects for combinations of antituberculosis drugs and antifungals against *H. capsulatum*

<table>
<thead>
<tr>
<th>Combination</th>
<th>MFC range (g/ml)</th>
<th>MIC geometric mean (g/ml)</th>
<th>FICI range</th>
<th>Synergism/total no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antifungal</td>
<td>Antituberculosis</td>
<td>Antifungal</td>
<td>Antituberculosis</td>
<td>Antifungal</td>
</tr>
<tr>
<td>FY</td>
<td>ITC</td>
<td>1,560</td>
<td>1,170</td>
<td>0.0078</td>
</tr>
<tr>
<td>FY</td>
<td>FLC</td>
<td>390–1,560</td>
<td>390</td>
<td>7.8–31.25</td>
</tr>
<tr>
<td>FY</td>
<td>VRZ</td>
<td>ETB</td>
<td>147</td>
<td>0.375</td>
</tr>
<tr>
<td>FY</td>
<td>INH</td>
<td>PZA</td>
<td>585</td>
<td>0.004–0.008</td>
</tr>
</tbody>
</table>