First Carbapenem-Resistant Isolates of *Acinetobacter soli* in Japan

Acinetobacter sp. has emerged as a major hospital pathogen (8). The greatest concern has been the emergence of carbapenem resistance in *Acinetobacter baumannii* by the acquisition of OXA-type carbapenemase or metallo-β-lactamases, since few effective antimicrobial agents exist. Several mechanisms can underlie carbapenem resistance in *A. baumannii* (1), but less is known about carbapenem resistance in non-*A. baumannii* species (4). There have been only three reports about *Acinetobacter soli* (5, 6, 8), with no mention of carbapenem resistance. We isolated carbapenem-resistant *A. soli* from two Japanese patients with bloodstream infections.

In January and April 2011, carbapenem-resistant *A. soli* was isolated from blood cultures of two patients at the Tohoku University Hospital. A central venous catheter was in situ in both cases. The species was identified by partial sequencing of the RNA polymerase β-subunit (*rpoB*) gene (7). MICs were determined by the agar dilution method of the Clinical and Laboratory Standards Institute (2).

To detect OXA-51-like, OXA-23-like, OXA-24-like, and OXA-58-like carbapenemase genes and IMP-1-, IMP-2-, VIM-1-, VIM-2-, SIM-, and NDM-1-type metallo-β-lactamase genes, PCR was performed (3, 9). The proximity of IS*Ab1*, IS*Ab2*, IS*Ab3*, and IS18 to *bla*OXA-58-like gene (9) and the *carO* (outer membrane protein) gene (1) was investigated by PCR. The OXA-type carbapenemase and metallo-β-lactamase genes were sequenced. Pulsed-field gel electrophoresis (PFGE) was done with the *Smal* restriction enzyme (11). Isolates with >80% similarity were considered to be within the same cluster (10).

The MIC of imipenem was ≥16 μg/ml for both isolates (Table 1). PCR showed that one isolate possessed only the IMP-1 gene, while the other had both IMP-1 and OXA-58-like genes. No other carbapenem resistance genes were detected. The OXA-58-like carbapenemase gene was not linked to IS*Ab1*, IS*Ab2*, IS*Ab3*, or IS18. Sequencing of the *bla*OXA-58-like and *bla*IMP-1 genes yielded OXA-58 and IMP-1, respectively. Both isolates exhibited decreased expression of *carO*. Thus, the mechanism of resistance in one of these isolates could involve a synergistic interaction between IMP-1 expression and reduced expression of an outer membrane protein. The two isolates had different PFGE patterns (not shown).

Currently, 33 genomic species of the *Acinetobacter* genus have been identified by molecular methods (5). *A. baumannii* is generally the pathogen isolated most frequently in clinical settings, although it is difficult to perform accurate species identification at many institutions. Recently, sequencing has provided reliable identification of *Acinetobacter* isolates to the species level in laboratories (7), and severe infections caused by non-*A. baumannii* clinical isolates have been reported (5, 8). To our knowledge, however, carbapenem-resistant *A. soli* isolates have not been reported previously.

Three *Acinetobacter* isolates with imipenem MICs of ≥16 μg/ml were obtained from blood cultures at the Tohoku University Hospital over the past 5 years, and two of these isolates were identified as *A. soli* by partial *rpoB* gene sequencing. This indicates that carbapenem resistance is now present among clinical isolates of *A. soli*, and we should monitor its prevalence. The present findings emphasize the importance of performing accurate epidemiological investigation of non-*A. baumannii* species, including *A. soli*.

Acknowledgment
We thank laboratory members for technical support.

References

Table 1 Antimicrobial susceptibilities of two *Acinetobacter soli* isolates from blood cultures

<table>
<thead>
<tr>
<th>Antibiotic agents</th>
<th>MIC (μg/ml)</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ampicillin-sulbactam</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Piperacillin</td>
<td>≥16</td>
<td>≥256</td>
<td>256</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>64</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>≥16</td>
<td>≥256</td>
<td>256</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Ceftazidine</td>
<td>≥16</td>
<td>≥256</td>
<td>128</td>
</tr>
<tr>
<td>Cefepime</td>
<td>≥16</td>
<td>≥256</td>
<td>32</td>
</tr>
<tr>
<td>Imipenem</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>≥16</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>≥16</td>
<td>≥256</td>
<td>256</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.25</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Aztreonam</td>
<td>128</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Colistin</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

Antimicrobial Agents and Chemotherapy p. 2786–2787

Shiro Endo
Mina Sasano
Hisakazu Yano
Department of Infection Control and Laboratory Diagnostics
Tohoku University Graduate School of Medicine
Sendai, Japan

Kazuaki Arai
Department of Clinical Microbiology with Epidemiological Research & Management and Analysis of Infectious Diseases
Tohoku University Graduate School of Medicine
Sendai, Japan

Tetsuji Aoyagi
Masumitsu Hatta
Department of Infection Control and Laboratory Diagnostics
Tohoku University Graduate School of Medicine
Sendai, Japan

Yoshiaki Gu
Mitsuhiro Yamada
Department of Regional Corporation for Infectious Diseases
Tohoku University Graduate School of Medicine
Sendai, Japan

Koichi Tokuda
Department of Infection Control and Laboratory Diagnostics
Tohoku University Graduate School of Medicine
Sendai, Japan

Miho Ogawa
Masahiro Shimojima
Department of Bacteriology
BML, Inc.
Kawagoe, Japan

Miho Kitagawa
Department of Infection Control and Laboratory Diagnostics
Tohoku University Graduate School of Medicine
Sendai, Japan

Hiroyuki Kunishima
Department of Regional Cooperation for Infectious Diseases
Tohoku University Graduate School of Medicine
Sendai, Japan

Yoichi Hirakata
Department of Clinical Microbiology with Epidemiological Research & Management and Analysis of Infectious Diseases
Tohoku University Graduate School of Medicine
Sendai, Japan

Mitsuo Kaku
Department of Infection Control and Laboratory Diagnostics
Tohoku University Graduate School of Medicine
Sendai, Japan