The Genetic Environment of the cfr Gene and the Presence of Other Mechanisms Account for the Very High Linezolid Resistance of Staphylococcus epidermidis Isolate 426-3147L

Jacqueline LaMarre,a Rodrigo E. Mendes,b Teresa Szal,a Stefan Schwarz,c Ronald N. Jones,b Alexander S. Mankinb

Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, USA; JMI Laboratories, North Liberty, Iowa, USA; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany.

The clinical Staphylococcus epidermidis isolate 426-3147L exhibits an unusually high resistance to linezolid that exceeds 256 μg/ml. The presence of the cfr gene, encoding the RNA methyltransferase targeting an rRNA nucleotide located in the linezolid binding site, accounts for a significant fraction of resistance. The association of cfr with a multicopy plasmid is one of the factors that contribute to its elevated expression. Mapping of the cfr transcription start sites identified the native cfr promoter. Furthermore, analysis of the cfr transcripts in Staphylococcus epidermidis 426-3147L showed that some of them originate from the upstream plasmid-derived promoters whose activity contributes to efficient cfr transcription. The genetic environment of the cfr gene and its idiosyncratic transcription pattern result in increased activity of Cfr methyltransferase, leading to a high fraction of the ribosomes being methylated at A2503 of the 23S RNA. Curing of the Staphylococcus epidermidis 426-3147L isolate from the cfr-containing plasmid reduced the linezolid MIC to 64 μg/ml, indicating that other determinants contribute to resistance. Nucleotide sequence analysis revealed the presence of the C2534T mutation in two of the six 23S rRNA gene alleles as well as the presence of mutations in the genes of ribosomal proteins L3 and L4, which were previously implicated in linezolid resistance. Thus, the combination of resistance mechanisms operating through alteration of the drug target site appears to cause an unusually high level of linezolid resistance in the isolate.
23S rRNA and confers resistance to macrolides, lincosamides, and streptogramin B. Integration of erm(B) upstream of cfr resulted in the disruption of the putative cfr promoter and the deletion of the first 61 nucleotides (nt) of ORF1; it also placed cfr under the control of the erm(B) promoter. As a result, in the CM05 strain, erm(B) and cfr form an operon, mlf, whose expression confers resistance to all clinically relevant antibiotics that target the large ribosomal subunit (19, 26). Another Trn197-derived erm(B) gene is located downstream of the cfr gene. The 1.5-kb cfr-containing region is inserted in the 23S rRNA gene of the rRNA allele. Active transcription of the rRNA operon might contribute to cfr expression in the CM05 isolate (27).

Since 2007, cfr has been found in a number of linezolid-resistant clinical staphylococcal isolates, where it can be present on plasmids or in the chromosome (28–35). Association of cfr with mobile genetic elements and the low fitness cost associated with its expression (36) may account for its spread and maintenance in clinical pathogens.

Although cfr renders staphylococci linezolid resistant, the presence of the gene increases the MIC only severalfold, bringing it in the range of 8 to 32 μg/ml. Therefore, when the cfr-positive S. epidermidis strain 426-3147L, with a linezolid MIC exceeding 256 μg/ml, was isolated, the reasons for such a high level of resistance remained unclear (33). In this work, we examined the genetic environment of cfr in strain 426-3147L and characterized its expression. We also analyzed the presence of other genetic changes that can contribute to linezolid resistance of the 426-3147L isolate.

MATERIALS AND METHODS

Strains. S. epidermidis strain 426-3147L was isolated in 2007 through the LEADER Program from a blood culture of a 79-year-old female patient in Arizona (33) who had received vancomycin, cefepime, and ampicillin-sulbactam, although no linezolid use was documented. The same strain was isolated in the same facility 1 year later (30).

The cfr-positive S. sciuri strain carrying the plasmid pSCFS1 was isolated in 2000 from the nasal swab of a calf (16).

S. epidermidis ATCC 12228 is a linezolid-sensitive reference strain from the American Type Culture Collection.

DNA isolation. S. epidermidis and S. aureus cells were grown in brain heart infusion (BHI) media (BD Diagnostics, Sparks, MD). DNA was isolated using the MasterPure Gram-positive DNA purification kit (Epicentre Biotechnologies, Madison, WI) by following the manufacturer’s protocol but with the inclusion of a 5-min bead-beating step after the addition of proteinase K (included in the kit).

RNA isolation. Total RNA was isolated from staphylococcal strains using the RNeasy Minikit (Qiagen, Germantown, MD) by following the manufacturer’s protocol, with some modifications. Briefly, overnight cultures of cells grown in BHI media were diluted 1:100 in fresh media and to an A$_{600}$ of 0.5. Five ml of cell culture was pelleted, washed with 500 μl H$_2$O, and resuspended in 200 μl of lysis buffer (Tris-HCI, pH 7.5, 30 mM MgCl$_2$, 30 mM NH$_4$Cl) containing 0.5 mg/ml of lysostaphin (Sigma, St. Louis, MO). After incubation for 30 min at 37°C, 350 μl of the kit buffer RLT was added, and the remaining steps of RNA isolation were performed as instructed by the kit manual.

Plasmid isolation. Total plasmid DNA was isolated from S. epidermidis or S. aureus using the PureYield Plasmid Midi prep system (Promega, Madison, WI), with minor modifications. Briefly, 50 ml of cells was pelleted and resuspended in 2.88 ml resuspension buffer (supplied in the kit) supplemented with 120 μg lysostaphin and 120 μg lysozyme (both from Sigma). The mixture was incubated at 37°C for 1 h, and the remaining steps were carried out by following the kit manual.

MICs. MICs were determined by broth microdilution according to the procedure established by the Clinical and Laboratory Standards Institute (37).

Detection of cfr by PCR. PCR for detection of the presence of cfr in staphylococci was carried out on whole cells. Colonies were picked from agar plates and incubated for 10 min in 10 μl of H$_2$O at 100°C. After 1 min of centrifugation, 1 μl of the resulting supernatant was used as a template in the PCR that was carried out with two cfr-specific primers, GAGATAA CAGATCAAGTTTTA and CGAGTATATTACCTATCAT, under the following conditions: 2 min at 94°C, 30 cycles of 94°C for 30 s, 45°C for 30 s, and 72°C for 45 s; and a final extension at 72°C for 1 min.

** Primer extension analysis of the A2503 modification.** Primer extension analysis of the extent of A2503 methylation was carried out as previously described (17, 26), with minor modifications. Specifically, 1 pmol of [5'-32P]-labeled primer ATATCATTGTTAGTTTAAAAAAGGACAG was annealed with AMV reverse transcriptase (Seikagaku America, Falmouth, MA) in the presence of 1 mM each dGTP, dATP, and dCTP and 0.25 mM dTTP. The cDNA products were resolved in a denaturing 6% polyacrylamide sequencing gel.

Transformation of S. aureus RN4220 with the p71C plasmid. Total plasmid DNA isolated from 426-3147L was transformed into the S. aureus strain RN4220 by electroporation (38). Transformants were selected on BHI agar plates containing 10 μg/ml florfenicol.

Mapping the cfr transcription start site. Twenty μg of total RNA isolated from S. sciuri, S. aureus, or S. epidermidis cells was annealed with 0.75 pmol of [5'-32P]-labeled primer ATATCATTGTTAGTTTAAAAAAGGACAG. The primer was extended with AMV reverse transcriptase (Seikagaku America) in 0.13 M Tris-HCl, pH 8.5, 10 mM MgCl$_2$, and 10 mM dithiothreitol (DTT) for 30 min at 40°C in the presence of 1 mM each dGTP, dATP, dCTP, and dTTP. The reactions were stopped by the addition of 1 μl of 10 N NaOH. After a 15-min incubation at 37°C, the reactions were neutralized with 1 μl of 10 N HCl. The cDNA products were ethanol precipitated and resolved in a denaturing 6% polyacrylamide sequencing gel alongside the sequencing reactions.

Curing 426-3147L of the p71C plasmid. A culture of 426-3147L was grown overnight at 37°C in BHI media. The culture was streaked onto BHI agar plates and incubated at 42°C for 48 h. The colonies were restreaked onto fresh BHI plates and incubated for 24 h at 42°C. Once again, the colonies were restreaked onto a fresh BHI plate and maintained at 42°C for 48 h. Colonies from the final plate were replica plated on BHI agar plates without supplement or supplemented with 20 μg/ml florfenicol.

Sequencing rrl, rplC, and rplD. The individual 23S rRNA gene (rrl) alleles were PCR amplified using conditions described by Liakopoulos et al. (39) and sequenced. The genes rplC and rplD, encoding the ribosomal proteins L3 and L4, respectively, were PCR amplified according to Mendes et al. (34) and sequenced. Nucleotide and deduced amino acid sequences were compared to those from wild-type S. epidermidis ATCC 12228 (40).

Nucleotide sequence accession number. The sequence determined in the course of this work was deposited in GenBank under accession number JX910899.

RESULTS

Increased extent of A2503 modification in 426-3147L. The PCR analysis showed the presence of the cfr gene in the genome of 426-3147L (Fig. 1A), indicating that the activity of the Cfr methyltransferase accounts for at least a fraction of the linezolid resistance. Cfr-dependent methylation of C8 of A2503 in 23S rRNA interferes with the progression of reverse transcriptase (17), which makes it possible to use the primer extension technique for the evaluation of the extent of Cfr-mediated rRNA modification (19, 26). The appearance of a strong reverse transcriptase stop at A2503 in the RNA isolated from 426-3147L, which was lacking in...
control RNA samples, confirmed the efficient methylation of this nucleotide by the Cfr methyltransferase in 426-3147L (Fig. 1B). The extent of A2503 methylation in 426-3147L is ca. 1.5-fold higher than that in the S. sciuri strain carrying the pSCFS1 plasmid (Fig. 1B), indicating that the cfr gene structure, its copy number, or specific expression pattern could account for the elevated level of Cfr activity in the 426-3147L strain. It should be noted, however, that primer extension analysis allows only the relative quantification of A2503 modification, and it remains unknown which fraction of 23S rRNA molecules is modified in S. sciuri/pSCFS1 or 426-3147L.

The cfr gene is located on a plasmid in 426-3147L. The cfr gene is often found on plasmids (16, 24, 25, 41, 42). However, in some clinical and animal staphylococcal isolates it resides in the chromosome (25–27, 43). Our preliminary analysis showed that 426-3147L carries one or several plasmids that could host the cfr gene. In order to determine whether cfr was located on a plasmid or the chromosome, total DNA or plasmid preparation from 426-3147L was digested with the HindIII restriction enzyme and, after Southern blotting, hybridized with a cfr-specific probe (Fig. 2A and B). A probe specific for the chromosomal gene se0011, encoding homoserine-o-acetyltransferase, was included in the hybridization mixture as a control. While total DNA and the plasmid-enriched fraction contained DNA bands that hybridized with both probes (indicating contamination of the plasmid preparation with chromosomal material), the relative intensity of the cfr-specific signal was significantly stronger in the plasmid-enriched fraction, indicating that the cfr gene resides on the plasmid.

In order to unequivocally verify the presence of cfr on a plasmid, the plasmid preparation from 426-3147L was used to transform the S. aureus strain RN4220. Transformants were selected on plates containing 10 μg/ml florfenicol. The high florfenicol and linezolid MICs (Table 1) and PCR analysis (Fig. 2C) confirmed that S. aureus transformants acquired the cfr gene. HindIII restriction digest of the plasmid prepared from the transformed RN4220 cells (designated p7LC) generated five DNA fragments with a combined size of 30.5 kb, which provides the minimally estimated
plasmid size. The p7LC HindIII fragments precisely matched a subset of HindIII fragments seen in the plasmid preparation from strain 426-3147L (Fig. 2D). The simplest explanation of this result is that the 426-3147L isolate carries two or more plasmids, one of which, p7LC, carries the cfr gene.

Although we did not make a special effort to accurately determine the copy number of the p7LC plasmid in the 426-3147L strain, the relative intensity of the p7LC-specific bands in the HindIII digest of the total DNA preparation (Fig. 2A) argues that the plasmid copy number can be in the range of 10 to 20 copies per chromosome, accounting for a high dosage of the cfr gene and, thus, likely contributing to the elevated level of Cfr expression.

Genetic organization of cfr in the p7LC plasmid. In order to determine the structure and genetic environment of the cfr gene in the p7LC plasmid, we sequenced a 10,125-bp segment of p7LC that included the 1,050-bp cfr gene, a 5,430-bp 5′-flanking region, and a 3,645-bp 3′-flanking region (accession no. JX910899) (Fig. 3). The nucleotide sequence of cfr is identical to that of the gene in the pSCFS1 plasmid and in the CM05 S. aureus clinical isolate (16, 26). The 367-bp upstream region of cfr, including the predicted cfr transcription start site (see below), closely matched the cfr-flanking sequence in pSCFS1, except for a 51-bp deletion and 2 single-nucleotide polymorphisms. The immediate genetic environment of cfr in p7LC resembles that discovered in the recently described 40-kb plasmid pSS-01, which is found in staphylococcal isolates from swine (accession no. JQ041372) (25). A complete Tn4001-like transposon is found upstream of cfr in the p7LC plasmid. The aminoglycoside resistance gene aacA-aphD of Tn4001 is flanked by two 1.3-kb IS256 elements that carry transposase genes. As in pSS-01, the transposase genes in the left and right IS256 elements in p7LC are not identical, although they do exhibit 87% sequence identity. Another copy of the IS256-associated transposase gene, oriented toward the cfr gene and identical in its sequence to the right (cfr-proximal) transposase gene of the Tn4001-like transposon, is found downstream of cfr (Fig. 3). Similar to pSS-01, this transposase gene is followed by a short ORF (ORF1) coding for a protein which exhibits homology to a transcription regulator of the Paenibacillus vortex mer operon (25, 44).

The target of insertion of the cfr-carrying genetic element is different in pSS-01 and p7LC (Fig. 3). In p7LC, the cassette is inserted in codon 84 of an ORF (ORF2) which exhibits 94% nucleotide sequence identity to the corresponding segment of a 398-codon ORF from the plasmid p18813-PO3, which is found in the S. aureus strain USA300 (45). The function of the protein encoded by ORF2 is unknown. The segment preceding ORF2 in p7LC, which includes another ORF (ORF3) coding for a hypothetical protein with unknown function, also shows high similarity (97% nucleotide identity) to the corresponding segment in p18813-PO3. The difference in the insertion loci of the cfr-carrying genetic element in pSS-01 and p7LC reveals its mobile nature and potential propensity for transposition between plasmids with various levels of species specificity.

Idiosyncratic transcription pattern of cfr in the p7LC plasmid. In the originally described cfr-bearing plasmid pSCFS1 (S. sciuri), expression of the cfr gene was proposed to be driven by a computationally predicted Pcr promoter located 366 bp upstream of the gene start codon (16). A similar hypothetical promoter sequence was found in the cfr-carrying plasmid pSCFS3 in Staph-

Table 1 MICs of linezolid and florfenicol for different strains used in the study

<table>
<thead>
<tr>
<th>Organism and strain</th>
<th>Linezolid (µg/ml)</th>
<th>Florfenicol (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. epidermidis ATCC 12228</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S. epidermidis 426-3147L</td>
<td>>256</td>
<td>1,024</td>
</tr>
<tr>
<td>S. aureus RN4220</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S. aureus RN4220/p7LC</td>
<td>8</td>
<td>512</td>
</tr>
<tr>
<td>S. epidermidis 426-3147L/cured of p7LC</td>
<td>64</td>
<td>16</td>
</tr>
</tbody>
</table>

FIG 3 Genetic environment of cfr in p7LC. The cfr gene is shown in black. All of the other genes associated with the pSS-01-like element (gray) that are nearly identical between p7LC and pSS-01 are shown by open arrows. The genes at the insertion site of the element in p7LC are shown by diagonally hatched arrows. The Tn558 transposase gene in the 3′-flanking region of the insertion site in pSS-01 is shown vertically hatched. The extended 5′-flanking sequence in pSS-01 is unknown; the immediate 5′-flanking sequence does not show homology to the site of insertion in p7LC. The left (IRL) and right (IRR) IS256 inverted repeats are shown by arrows. The long inverted repeats at the site of the cassette insertion are indicated by open triangles. The gene sizes (in bp) are indicated below the genes; the sizes of intergenic regions are indicated above.
Unusually High Resistance to Linezolid

Unusually High Resistance to Linezolid

March 2013 Volume 57 Number 3 aac.asm.org

were also observed (marked by asterisks in Fig. 4), suggesting that some of the transcripts which encompass the cfr gene in 426-3147L originated upstream of the P_{cfr} transcription start site.

The sizes of the additional transcription products suggest that they were initiated within the Tn4001-like sequence whose right boundary is located 127 bp upstream from the cfr promoter start site. The right-most tsp gene of Tn4001 (proximal to cfr) and the aminoglycoside resistance gene aacA-aphD of Tn4001 are oriented in the direction opposite that of cfr (Fig. 3), so that promoters responsible for their transcription cannot contribute to cfr expression. Therefore, either a cryptic right-wise-oriented promoter within the cfr-proximal part of the Tn4001-like transposon or transcription from the promoter that drives expression of the leftmost tsp gene of Tn4001 accounts for additional transcripts that carry the cfr sequence. Irrespective of the exact location of the additional transcriptional start site(s), the presence of an additional promoter(s) that contributes to the transcription of cfr in the p7LC plasmid in the 426-3147L strain (and possibly in pSS-01) could lead to an elevated level of cfr mRNA and more efficient expression of the methylase than that of the strains where cfr is expressed exclusively from the P_{cfr} promoter.

Determinants other than cfr contribute to the high level of linezolid resistance in the 426-3147L strain. Our analysis of the cfr genetic organization in the 426-3147L strain revealed that association of the gene with a multicopy p7LC plasmid and transcription from additional promoters could enhance its expression. However, none of these factors seem to be significant enough to account for the very high linezolid MIC of the 426-3147L strain (>256 μg/ml). Indeed, the linezolid MIC of S. aureus RN4220 transformed with p7LC reached only 8 μg/ml. Although this difference could be attributed to the genetic background of the host or to a different copy number of p7LC in S. epidermidis and S. aureus, it was likely that other resistance determinants were operating in the 426-3147L isolate. To verify this possibility, the 426-3147L cells were cured of the cfr-carrying p7LC plasmid. The loss of p7LC was confirmed by cfr-specific PCR. The cured strain exhibited a linezolid MIC of 64 μg/ml, which was notably reduced compared to the original, cfr-positive cells but substantially higher than the MIC of the linezolid-susceptible S. epidermidis control strain ATCC 12228 (Table 1). This result clearly showed that additional resistance mechanisms played a role in linezolid resistance of 426-3147L.

Besides the presence of the cfr gene, linezolid resistance can be conferred by mutations in 23S rRNA as well as in ribosomal proteins L3 and L4 (reviewed in references 9 and 10). To test for the presence of the resistance mutations, we sequenced domain V of the 23S rRNA from the 426-3147L isolate. To verify this possibility, the 426-3147L isolate was sequenced. In the 426-3147L isolate, all six alleles were observed (marked by asterisks in Fig. 4), suggesting that some of the transcripts which encompass the cfr gene in 426-3147L originated upstream of the P_{cfr} transcription start site.

The sizes of the additional transcription products suggest that they were initiated within the Tn4001-like sequence whose right boundary is located 127 bp upstream from the cfr promoter start site. The right-most tsp gene of Tn4001 (proximal to cfr) and the aminoglycoside resistance gene aacA-aphD of Tn4001 are oriented in the direction opposite that of cfr (Fig. 3), so that promoters responsible for their transcription cannot contribute to cfr expression. Therefore, either a cryptic right-wise-oriented promoter within the cfr-proximal part of the Tn4001-like transposon or transcription from the promoter that drives expression of the leftmost tsp gene of Tn4001 accounts for additional transcripts that carry the cfr sequence. Irrespective of the exact location of the additional transcriptional start site(s), the presence of an additional promoter(s) that contributes to the transcription of cfr in the p7LC plasmid in the 426-3147L strain (and possibly in pSS-01) could lead to an elevated level of cfr mRNA and more efficient expression of the methylase than that of the strains where cfr is expressed exclusively from the P_{cfr} promoter.

Determinants other than cfr contribute to the high level of linezolid resistance in the 426-3147L strain. Our analysis of the cfr genetic organization in the 426-3147L strain revealed that association of the gene with a multicopy p7LC plasmid and transcription from additional promoters could enhance its expression. However, none of these factors seem to be significant enough to account for the very high linezolid MIC of the 426-3147L strain (>256 μg/ml). Indeed, the linezolid MIC of S. aureus RN4220 transformed with p7LC reached only 8 μg/ml. Although this difference could be attributed to the genetic background of the host or to a different copy number of p7LC in S. epidermidis and S. aureus, it was likely that other resistance determinants were operating in the 426-3147L isolate. To verify this possibility, the 426-3147L cells were cured of the cfr-carrying p7LC plasmid. The loss of p7LC was confirmed by cfr-specific PCR. The cured strain exhibited a linezolid MIC of 64 μg/ml, which was notably reduced compared to the original, cfr-positive cells but substantially higher than the MIC of the linezolid-susceptible S. epidermidis control strain ATCC 12228 (Table 1). This result clearly showed that additional resistance mechanisms played a role in linezolid resistance of 426-3147L.

Besides the presence of the cfr gene, linezolid resistance can be conferred by mutations in 23S rRNA as well as in ribosomal proteins L3 and L4 (reviewed in references 9 and 10). To test for the presence of the resistance mutations, we sequenced domain V of each of the six individual rrl alleles of the 23S RNA gene in 426-3147L as well as the genes rplC and rplD, encoding ribosomal proteins L3 and L4. The C2534T mutation (E. coli numbering) was identified in two of the six rrl alleles. This mutation was previously found in linezolid-resistant isolates of S. epidermidis (15, 46). Three missense mutations, altering amino acid residues His146Gln, Val154Leu, and Ala157Arg, were identified in the 23S RNA gene, and the gene rplD had an insertion of a glycine codon (GTT) between the Gly71 codon and Arg72 codon. Although the direct contribution of the 23S rRNA mutation C2534T or the identified ribosomal protein mutations in linezolid resistance remains to be elucidated, their occurrence in the genes previously implicated in resistance to the drug and the general proximity to the site of
linezolid binding in the ribosome is highly suggestive of their role in increasing the linezolid MIC of the 426-3147L isolate.

DISCUSSION

In this paper, we have described a combination of mechanisms that account for the exceptionally high resistance of the clinical 426-3147L strain to linezolid. Of note, the finding of identical isolates of 426-3147L in the same health care facility in subsequent years stresses the ability of this strain to persist in a clinical setting, suggesting low combined fitness cost of the resistance mechanisms in 426-3147L and highlighting the importance of understanding the nature of linezolid resistance (30, 47).

One of the key factors of linezolid resistance of the 426-3147L strain is the presence of the cfr gene, which encodes the methyltransferase targeting an rRNA residue located in the linezolid binding site. The presence of the cfr gene on a multicopy plasmid, p7LC, increases the gene dosage to ca. 20 copies per cell. The close physical association of the cfr gene in p7LC with the Tn4001-like transposon apparently increases the rate of its transcription, because the cfr-specific transcripts originate not only at the authentic Pcfr promoter but also within the transposon sequence (Fig. 4). The combination of these factors likely accounts for the enhanced expression of Cfr methyltransferase in the 426-3147L strain, a high degree of Cfr-mediated modification of A2503, and the resulting high level of linezolid resistance (Fig. 1B and Table 1).

In the first cfr-positive clinical MRSA isolate, cfr was genetically and transcriptionally linked to the ermA(B) gene. Coexpression of the Cfr and Erm methyltransferases within the mbr operon rendered cells resistant to all of the clinically relevant antibiotics targeting the large ribosomal subunit, including drugs belonging to the macrolide, lincosamide, pleuromutilin, phenicol, oxazolidinone, and streptogramin families of compounds (19, 26). In 426-3147L, the presence of the Tn4001-like transposon upstream of cfr, which carries the aminoglycoside resistance gene aacA-aphD, links together resistance genes acting upon both ribosomal subunits. Given that the same Tn4001-cfr element is found on different plasmids within different genetic environments (Fig. 3), it is reasonable to expect dissemination of this element to other hosts and genetic locales.

The cfr gene is not the sole determinant of linezolid resistance in 426-3147L. Curing the strain of the cfr-containing p7LC plasmid reduced resistance from >256 to 64 µg/ml, indicating that other mechanisms contribute to the very high linezolid MIC of the original isolate. We found the C2533T mutation in two alleles of rRNA genes in the 426-3147L strain, as well as several mutations in proteins L3 and L4. The C2534T mutation has been found previously in S. epidermidis where, when it is present in two alleles, as is the case for the 426-3147L isolate, it increased the linezolid MIC to 8 µg/ml (48). The mutations found in 426-3147L in genes of proteins L3 and L4 are located close to the position where mutations were identified in other linezolid-resistant staphylococcal isolates (11–14, 28). These mutations can either increase the level of cfr-conferred linezolid resistance, as was previously noted for the ribosomal protein L3 mutations (28), or reduce the fitness cost associated with rRNA mutations or cfr-mediated RNA modification.

The high level of linezolid resistance of the 426-3147L isolate seems to be accounted for by a combination of resistance mechanisms operating through the alteration of the drug target. The combined action of the cfr-mediated modification of an rRNA residue and mutations in rRNA and ribosomal proteins can be sufficient to provide the level of resistance observed in the isolate. Nevertheless, we cannot rule out the involvement of other resistance mechanisms, such as drug efflux or drug modification. Altogether, our findings reinforce a growing understanding that in spite of the synthetic nature of linezolid, the pathogens targeted by this antibiotic have sufficient genetic flexibility to acquire very significant levels of resistance by combining the effects of several different resistance mechanisms.

ACKNOWLEDGMENTS

We thank Ehsan Tavassoli for help in the early stages of this project. This work was supported in part by a grant from the National Institutes of Health (R01AI072445; to A.S.M.).

REFERENCES

