Tigecycline Induction of Phenol-Soluble Modulins by Invasive Methicillin-Resistant *Staphylococcus aureus* Strains

Jason Yamaki, a Timothy Synold, b Annie Wong-Beringer a,c

University of Southern California, Los Angeles, California, USAa; City of Hope Medical Center, Duarte, California, USAb; Huntington Hospital, Pasadena, California, USAc

We examined the effects of tigecycline on three types of exoproteins, α-type phenol-soluble modulins (PSMα, to PSMα4), α-hemolysin, and protein A, in 13 methicillin-resistant *Staphylococcus aureus* isolates compared to those of clindamycin and linezolid. Induction was specific to PSMα. Paradoxical increases in PSMα occurred in 77% of the isolates with tigecycline at 1/4 and 1/8 MICs and clindamycin at 1/8 MIC compared to only 23% of the isolates with linezolid at 1/8 MIC. Induction was specific to PSMα, to PSMα4, as protein A and α-hemolysin production was decreased under the same conditions by all of the antibiotics used.

Methicillin-resistant *Staphylococcus aureus* (MRSA) virulence in pneumonia and bacteremia has been attributed to exoproteins, specifically, α-hemolysin (Hla) and α-type phenol-soluble modulins (PSMα, to PSMα4), which are produced by nearly all *S. aureus* strains and in excess by community-acquired MRSA strains (1). These exoproteins not only cause direct damage to target host cells but also exacerbate the host inflammatory response, contributing to acute lung injury. Additionally, recent reports have demonstrated the importance of protein A (Spa) in invasive diseases such as pneumonia (2, 3).

In light of the impressive arsenal of virulence factors contributing to the success of MRSA as a pathogen, it is of keen interest to determine if anti-MRSA agents belonging to the antibiotic class of protein synthesis inhibitors provide the added antivirulence benefit of exoprotein inhibition. In the present study, we investigated the antivirulence potential of tigecycline, linezolid, and clindamycin which have been proven efficacious in the treatment of MRSA infections. Our goal was to determine whether antivirulence effects can be generalized across different clinical isolates, different agents that inhibit protein synthesis, and different exoproteins. Specifically, we tested the effects of the above three antibiotics at subinhibitory concentrations on formylated PSMα to PSMα4, Hla, and Spa production by invasive MRSA isolates.

Eleven invasive MRSA isolates were tested under the following conditions. A modified CLSI broth macrodilution assay was used to determine MICs after 24 h of incubation at 37°C and shaking at 250 rpm in tryptic soy broth. Supernatants were then analyzed by liquid chromatography-tandem mass spectrometry, and Hla and Spa were analyzed by Western blotting as previously described (4, 5).

Table 1 depicts the SCCmec type, PVL status, and baseline PSMα production characteristics of the 13 isolates studied (11 clinical isolates and two control strains). The PSMα, to PSMα4 peptides have been shown to cause concentration-dependent neutrophil lysis (6, 7). A PSMα4 concentration of 5 μg/ml has been shown to lyse nearly 50% of human polymorphonuclear neutrophils (PMNs), while 10 μg/ml of PSMα4 and PSMα4 can cause 60% and 10% PMN lysis, respectively (8, 9). Thus, isolates were grouped on the basis of the amount of the most potent peptide, PSMα4, produced at the baseline as very low to low (≤5 μg/ml), medium (6 to 15 μg/ml), or high (>15 μg/ml) producers.

Bacterial growth at 1/2 MICs of all three antibiotics was altered in half of the isolates tested by as much as 50% of the final OD compared to a no-antibiotic control, which no significant difference in the growth of any isolates was observed at 1/4 and 1/8 MICs. Thus, subsequent discussions will focus on the effect of antibiotics at the latter subinhibitory concentrations that did not affect growth. Measured PSMα values were normalized to the OD600 at the time the supernatant was harvested.

![GraphPad Prism version 5.0 software (GraphPad, San Diego, CA).](http://aac.asm.org/)

TABLE 1 Characteristics of the 11 clinical isolates and two control strains used in this study

<table>
<thead>
<tr>
<th>Isolate or strain</th>
<th>mec type</th>
<th>PVLa</th>
<th>Infection type</th>
<th>PSMα baseline</th>
<th>MIC (μg/ml)¹</th>
<th>TYG</th>
<th>CL</th>
<th>LZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IV</td>
<td>Blood</td>
<td>Low</td>
<td>0.125</td>
<td>0.188</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IV</td>
<td>Blood</td>
<td>Medium</td>
<td>0.125</td>
<td>0.25</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IV</td>
<td>Blood</td>
<td>Medium</td>
<td>0.125</td>
<td>0.188</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>Blood</td>
<td>Medium</td>
<td>0.125</td>
<td>0.25</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IV</td>
<td>Blood</td>
<td>Medium</td>
<td>0.125</td>
<td>0.188</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IV</td>
<td>Pneumonia</td>
<td>Low</td>
<td>0.188</td>
<td>0.125</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>IV</td>
<td>Pneumonia</td>
<td>Medium</td>
<td>0.125</td>
<td>0.188</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IV</td>
<td>Necrotizing pneumonia</td>
<td>High</td>
<td>0.125</td>
<td>0.25</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>II</td>
<td>Pneumonia</td>
<td>Very low</td>
<td>0.125</td>
<td>>256</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>II</td>
<td>Pneumonia</td>
<td>Very low</td>
<td>0.125</td>
<td>>256</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>II</td>
<td>Pneumonia</td>
<td>Very low</td>
<td>0.125</td>
<td>0.188</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control strains

- **USA300 (LAC)**
 - USA600
 - IV: Wound
 - Medium: 0.25 μg/ml
 - Low: 0.125 μg/ml

a A plus or minus sign denotes the presence or absence, respectively, of the lukF/S gene, which encodes the Panton-Valentine leukocidin.

b The PSMα, production level at the baseline was arbitrarily defined as very low (<1 μg/ml), low (1 to 5 μg/ml), medium (6 to 15 μg/ml), or high (>15 μg/ml).

TYG, tigecycline; CL, clindamycin; LZ, linezolid. Resistance is defined as a MIC of >256 μg/ml (not tested for PSMα4 production at subinhibitory concentration).
Tigecycline appears to have the least inhibitory potential overall, while linezolid has the greatest (Fig. 1a to c). Increased production of all four PSM/H9251 peptides was the primary response observed in the presence of tigecycline at 1/4 and 1/8 MICs, while with clindamycin this occurred only at 1/8 MIC (Fig. 1b and c). Notably, compared to clindamycin at 1/8 MIC, which significantly induced PSM production in seven isolates, linezolid at 1/8 MIC modestly induced PSM production in only three isolates (Fig. 1a).

Strain-specific responses to the presence of subinhibitory antibiotic concentrations in PSM/H9251 production were observed. Drug concentrations that induced PSM/H9251 production in some isolates did not do so in others, independently of the baseline production level. Specifically, with tigecycline at both 1/4 and 1/8 MICs (Fig. 1d), PSM/H9251 was induced at least 1.5 times above the baseline in 77% (11/13) of the isolates, while induction did not occur in two isolates at any of the concentrations tested. Similar results were observed with clindamycin, where 54% (7/13) of the isolates were induced by greater than 150%; however, this was observed only at 1/8 MIC. In those isolates, PSM/H9251 production was induced to greater than 10 µg/ml, which has been shown to cause significant PMN lysis (9). Linezolid at the same concentration resulted in increases in PSM/H9251 in only 23% (3/13) of the isolates tested, was inhibitory in 5 isolates, and had no significant effects on the remaining isolates. Of additional interest is the observation that nonproducers at the baseline produced PSM/H9251 peptides in the presence of subinhibitory concentrations of both linezolid and tigecycline. However, it is noteworthy that PSM/H9251 production that was induced in those two isolates did not exceed 4 µg/ml and thus would not be expected to have a significant impact on host PMNs. In contrast to results observed with the PSM/H9251 to PSM/H9254 peptides, we found that the production of both Hla and Spa did not increase under any condition and was inhibited in a dose-dependent manner at the concentrations of all three antibiotics tested regardless of whether PSM/H9251 peptides were induced or suppressed in those isolates (Fig. 2).

To our knowledge, we are the first to investigate the effect of tigecycline on MRSA PSM/H9251 to PSM/H9254 peptide production. We also included clindamycin and linezolid for comparison and tested their antivirulence potential against two other key exotoxins, Hla and Spa. We found that at sub-MICs, agents in this class of antibiotics have pleiotropic effects on toxin production that are dependent on the drug, strain, and toxin tested.

All three of the antibiotics tested are known to have large volumes of distribution and would be expected to be present at high concentrations within tissues. However, the concentrations tested reflect clinical scenarios where sub-MICs might be achieved at sites of infection because of inadequate dosing, altered pharmacokinetic parameters of the patient, and differential drug distribution to various body sites. Specifically, compared to the concentrations achieved at other body sites, tigecycline achieves relatively low levels in serum (0.11 to 0.19 µg/ml) and lung epithelial lining fluid (0.11 to 0.31 µg/ml), which are relevant to bacteremia and

![Fig 1](https://example.com/fig1.png)

FIG 1 Overall effects of linezolid, clindamycin, and tigecycline on PSM/H9251 production. (a to c) Effects of antibiotics on the production of PSM/H9251 (α1, α2, α3, and α4, respectively). All measured PSM values (µg/ml) were normalized to OD₆₀₀ and then calculated as percentages relative to the baseline. Isolates (n = 10) included only those that produced measureable PSM peptides at the baseline (***, P < 0.0001; **, P < 0.001; *, P < 0.05). (d) Strain-to-strain variability of PSM/H9251 production at 1/8 MIC of tigecycline (TYG). Strains were grouped according to their baseline PSM/H9251 production as very low (<1 µg/ml), low (1 to 5 µg/ml), medium (6 to 15 µg/ml), and high (>15 µg/ml) producers.
protein synthesis inhibitors possess inhibitory potential against all of the exotoxins produced by *S. aureus* and affirm the importance of adequate dosing.

ACKNOWLEDGMENTS

This study was supported by a research grant from Pfizer.

We thank Bizin Xi for his technical assistance in the development and optimization of the mass spectrometry assay for PSMαx measurement. We also thank the Network on Antimicrobial Resistance in *Staphylococcus aureus* (NARSa) and The Los Angeles County Public Health Department for providing the control strains used.

REFERENCES

