Penicillinase-Producing Plasmid Types in Neisseria gonorrhoeae Clinical Isolates from Australia

David Whiley, a,b* Ella Trembizki, a,b Cameron Buckley, a,b Kevin Freeman, c Andrew Lawrence, d Athena Limnios, e Julie Pearson, f Helen Smith, g Kerrie Stevens, h Monica M. Lahra a

Queensland Paediatric Infectious Diseases Laboratory, Queensland Children’s Health Services, Brisbane, Queensland, Australia; Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Microbiology Laboratory, Pathology Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia; Microbiology and Infectious Diseases Women’s and Children’s Hospital, North Adelaide, Australia; WHO Collaborating Centre for STD, Microbiology Department, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, New South Wales, Australia; PathWest Laboratory Medicine-WA, Royal Perth Hospital, Perth, Western Australia, Australia; Public Health Microbiology, Communicable Disease, Queensland Health Forensic and Scientific Services, Archerfield, Queensland, Australia; Microbiological Diagnostic Unit, Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.

Penicillinase-producing Neisseria gonorrhoeae (PPNG) carrying the \(\text{bla}_{\text{TEM-135}} \) gene is of particular concern, as it is considered a stepping stone toward resistance to extended-spectrum cephalosporins. Here, we sought to characterize plasmid types and the occurrence of the \(\text{bla}_{\text{TEM-135}} \) gene for \(N. \) gonorrhoeae clinical isolates from Australia. We found that \(\text{bla}_{\text{TEM-135}} \) was prevalent in Australian PPNG and was detected on all three major plasmid types.

High-level resistance to penicillin in \(N. \) gonorrhoeae is conferred by plasmid-mediated penicillinase production. To date, seven different penicillinase-harboring gonococcal plasmid types have been described and comprise three main plasmid types (Asian, African, and Rio/Toronto plasmids) and four less common variants (Nimes, New Zealand, Johannesburg, and Australian plasmids) (1–7). There are two different penicillinase genes that may be carried by these plasmids, including the classical \(\text{bla}_{\text{TEM-1}} \) gene and the more recently described gonococcal \(\text{bla}_{\text{TEM-135}} \) gene (8). The \(\text{bla}_{\text{TEM-135}} \) gene is of concern as it is considered to be an intermediate between a penicillinase and an extended-spectrum \(\beta \)-lactamase (9) and is therefore considered a potential future threat to the effectiveness of \(N. \) gonorrhoeae treatment. The \(\text{bla}_{\text{TEM-135}} \) gene was first described in an isolate from Thailand (8) and has since been reported in various countries, including Canada (10), China (11), Japan (12), and Switzerland (13). However, there are now more recent data showing that \(\text{bla}_{\text{TEM-135}} \) has been present in gonococci since at least 1984, suggesting that the gene is not, as originally thought, a recent evolutionary event driven by selective pressure through the use of extended-spectrum cephalosporins (14).

Data on the rate at which penicillinase-producing \(N. \) gonorrhoeae (PPNG) isolates carry the \(\text{bla}_{\text{TEM-135}} \) gene are limited, ranging from 9.4% (9/96 PPNG isolates) in Thailand (9) and 20% (2/10 PPNG isolates) in Japan (12) to 58% (66/114 PPNG isolates) in China (11). These studies also highlighted that \(\text{bla}_{\text{TEM-135}} \) may occur in distinct genetic backgrounds and suggested that the gene has continued to be shared among gonococci via horizontal genetic exchange, having been found on the Asian and Rio/Toronto plasmid types and across various multilocus sequence types (MLST) and \(N. \) gonorrhoeae multiantigen sequence types (NG-MAST) (8, 11, 12, 14).

In this study, we sought to characterize plasmid types and the occurrence of the \(\text{bla}_{\text{TEM-135}} \) gene in \(N. \) gonorrhoeae clinical isolates from Australia. A total of 351 PPNG clinical isolates were included in this study (Table 1). These were all PPNG isolates identified as part of a broader investigation of \(N. \) gonorrhoeae isolates (\(n = 2,455 \)) that were collected from throughout Australia in the first half of the year 2012 (7, 15). The isolates were initially determined to be PPNG on the basis of acidometric and nitrocefin disc testing and subsequently by real-time PCR (7). The DNA used for the real-time PCR testing was stored at ~80°C until further investigation. Here, the DNA from these PPNG isolates was tested by a plasmid typing method that enables differentiation of the three main plasmid types, Asian, African, and Rio/Toronto, via conventional PCR and agarose gel electrophoresis detection (16). Plasmid types were assigned for 327 isolates (Table 1), and no amplification products were observed for the remaining 24 isolates; these 24 isolates were excluded from further analysis. Overall, the African plasmid type was most common, comprising 237/327 isolates (72.5%), followed by the Rio/Toronto (\(n = 47 \); 14.4%) and the Asian (\(n = 43 \); 13.1%) plasmids. (It should be noted that the 47 Rio/Toronto plasmids included a single isolate with the recently described “Australian plasmid”—a variant of the Rio/Toronto plasmid that we described in our preliminary investigations [7]. The plasmid typing method does not differentiate such variants.)

The 327 isolates were then investigated for the \(\text{bla}_{\text{TEM-135}} \) allele using a previously described allele-specific PCR method (9). The results of this testing showed that 90 (27.5%) of the 327 PPNG isolates harbored \(\text{bla}_{\text{TEM-135}} \) and comprised all 47 (100%) of the Rio/Toronto plasmids, 23/43 (53.5%) of the Asian plasmids, and 20/237 (8.4%) of the African plasmids. These 90 isolates were further genotyped by single nucleotide polymorphism (SNP)-based MLST (17), and 23 different sequence types (STs) were ob-
served for 89 isolates (one isolate could not be typed by the SNP MLST method) (Table 2). All the isolates with the African plasmid harboring \(\text{bla}_{\text{TEM-135}} \) \((n = 20)\) were a single ST (ST1600; Table 2), whereas the Asian and Rio/Toronto plasmids harboring \(\text{bla}_{\text{TEM-135}} \) comprised 5 and 17 different STs, respectively. Of note was that six of the plasmid type/ST combinations observed in our population had previously been observed in studies of \(\text{bla}_{\text{TEM-135}} \) in Japan and Thailand, which is consistent with international transmission of these strains. Of further interest was that the Rio/Toronto plasmids carried only the \(\text{bla}_{\text{TEM-135}} \) gene and not the \(\text{bla}_{\text{TEM-1}} \) gene. This adds further weight to the suggestion by Muhammad et al. (14) that the Rio/Toronto plasmids are the origin of \(\text{bla}_{\text{TEM-135}} \) in gonococci.

In summary, the \(\text{bla}_{\text{TEM-135}} \) gene was commonplace in this sample of Australian PPNG isolates, was detected on all three major plasmid types, was consistent with previous studies, and was found across genetically distinct clonal groups. These data provide further evidence of the broad distribution and ongoing spread of the \(\text{bla}_{\text{TEM-135}} \) gene among gonococci.

ACKNOWLEDGMENTS

This study was conducted as part of the reference work of the National Neisseria Network, Australia, and the Australian Gonococcal Surveillance Programme, which is funded by the Australian Government Department of Health and Ageing. Funding for this study was also provided by the Children’s Health Foundation Queensland.

REFERENCES

