Contributions of β-Lactamases and Porin Proteins OmpK35 and OmpK36 to Carbapenem Resistance in Clinical Isolates of KPC-2-Producing Klebsiella pneumoniae

Ying Zhang, Xiaofei Jiang, Yanyan Wang, Gang Li, Yu Rui Tian, Hong Liu, Fuqi Ai, Yiming Ma, Bei Wang, Feiyi Ruan, Kumar Rajakumar

Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom

Fifty-seven carbapenem-resistant Klebsiella pneumoniae isolates belonging to ST11 (50 isolates), ST423 (5 isolates), and two other sequence types were studied. All were positive for blaKPC-2, blaTEM-1, and blaCTX-M-14. SDS-PAGE analysis of six representative isolates demonstrated varied porin expression. Nevertheless, when blaKPC-2 was deleted, carbapenem resistance was markedly reduced. Additionally, SHV-12, DHA-1, and/or VIM-1 appeared to contribute to accessory carbapenemase activity. In contrast, OmpK35 and/or OmpK36 deficiency seemed to serve only as a minor cooperative factor.

Carbapenem MICs of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae vary widely from isolate to isolate, supporting the involvement of other factors (1–4). Indeed, Landman et al. (5) have demonstrated that carbapenem MICs are negatively correlated with OmpK36 expression, and Doménech-Sánchez et al. (6) have shown that loss of OmpK35 is associated with increased resistance to cephalosporins and carbapenems. However, other studies have shown that reduced expression of OmpK35 or OmpK36 alone does not significantly alter carbapenem MICs (7–9).

We analyzed 57 KPC-producing K. pneumoniae isolates collected from 2006 to 2009 at Huashan Hospital, Shanghai, China, using disc-based and/or Etest susceptibility testing. Colony PCR assays for blaIMP, blaVIM, blaKPC, blaCTX-M, blaSHV, and blaTEM and six plasmid-borne genes (blaNDM, blaOXA, blaIMP, blaVIM, blaESBLs, and blaox) that code for AmpC enzymes were performed (see Table S1 in the supplemental material for primer details). Standard multilocus sequence typing (MLST) protocols were utilized, with alternative primers for gapA, mdtB, rpoB, and tonB used as required. Fifty isolates belonged to ST11, five belonged to ST423, and one each belonged to ST65 and a novel MLST type, ST977. The first carbapenem-resistant isolate, derived from a urine specimen obtained in August 2006, belonged to ST423. However, only four other ST423 isolates were detected over the study period. In contrast, ST11 remained endemic throughout this period. Intriguingly, isolates belonging to ST65 and ST977 appeared only once. Except for XJ-2 and XJ-4, which exhibited lower carbapenem MICs, all 57 isolates showed high-level resistance to ampicillin, cefotaxime, ceftazidime, imipenem, meropenem, and ertapenem. PCR analysis suggested that all but two isolates produced TEM-1, KPC-2, CTX-M-14, and SHV-12; bblaSHV-12 was not detected in XJ-1 and XJ-4. In addition, all five ST423 isolates encoded DHA-1, and the XJ-5 (ST11) isolate uniquely produced VIM-1.

Isolates XJ-1, XJ-2, and XJ-3, representative of ST977, ST65, and ST423, respectively, were chosen for further analysis together with three ST11 isolates: XJ-4 because it had relatively low carbapenem MICs, XJ-5 because it had a supplementary blaTEM-1 gene, and XJ-6 because it was typical of most ST11 isolates. SDS-PAGE analysis of outer membrane proteins extracted as described previously (10) from cells grown overnight with shaking at 37°C in nutrient broth with or without 10 g/liter NaCl showed that XJ-1 expressed smaller quantities of OmpK36, while OmpK35 production was not detected for XJ-1, XJ-4, and XJ-5 (Fig. 1). Furthermore, as the likely OmpK36 protein bands of XJ-3 and XJ-6 were shifted upwards (see below for details), the status of OmpK35 bands in these strains could not be determined (Fig. 1).

Although DNA mutations relative to that of NTUH-K2044 were detected in the ompK35 sequences of XJ-4, XJ-5, and XJ-6, no amino acid changes were predicted (Fig. 2). In contrast, the predicted OmpK35 of XJ-1 exhibited 25 amino acid substitutions and a single insertion, while the corresponding sequence of XJ-2 varied by a single amino acid substitution only. The OmpK35 protein of XJ-3 lacked a five-amino-acid string (EIYNK), which mapped to the B1 β-sheet. This string of amino acids was strictly conserved in the OmpK35 sequences of the remaining five clinical isolates, NTUH-K2044, and MGH 78578, the last being the most divergent example analyzed (Fig. 2). The ompK36 sequences in XJ-3 and XJ-6 showed five sets of identical in-frame insertions and deletions that were predicted to lead to 9 additional amino acid residues and an increase in mass of approximately 1 kDa. Interestingly, this variant possessed an inserted aspartic acid-glycine pair that lay directly adjacent to the highly conserved L3 loop-borne PEFXG motif. Indeed, an identically placed aspartic acid-threonine insertion has previously been proposed to lead to OmpK36...
functional deficiency (Fig. 2) (11, 12). Extending this theme, we hypothesize that other amino acid sequence changes identified in OmpK35 and OmpK36, particularly those mapping to predicted secondary structural features, may also impact carbapenem resistance. Finally, we failed to amplify the entire ompK36 coding sequence despite using multiple primer pairs, suggesting that it was affected by a deletion and/or rearrangement.

We next deleted \textit{bla}\textsubscript{KPC-2} to examine its contribution to car-

FIG 1 SDS-PAGE-based outer membrane protein profiles of \textit{K. pneumoniae} strains grown under high (top panel)- or low (bottom panel)-osmolarity conditions. The two most prominent bands for all strains were OmpK36 and OmpA (lower prominent band). Faint bands corresponding to OmpK35 were seen just above the OmpK36 band for strains ATCC 13883 and XJ-2. The positions of the OmpK35 (white arrowhead) and OmpK36 (black arrowhead) bands of ATCC 13883 are indicated. Bands corresponding to the variant, size-shifted OmpK36 proteins of XJ-3 and XJ-6 are indicated with asterisks.

FIG 2 Comparison of predicted amino acid sequences of OmpK35 and OmpK36 with reference protein sequences. (a) Alignment of all regions of deduced sequences of OmpK35 which exhibited variation relative to the OmpK35 sequence of \textit{K. pneumoniae} NTUH-K2044. Matching regions of the predicted, highly variant OmpK35 sequence of MGH78578 are also shown. Reference sequence coordinates are indicated above. Schematics represent predicted secondary structures of the reference proteins, with that of OmpK36 being derived from the work of Alberti et al. (11). White rectangles represent \(\beta\)-strands, thick black lines indicate predicted protein loops, and gray rectangles symbolize \(\alpha\)-helices. Deleted amino acid residues are shown as dashes, while substitutions are shaded gray. Nonconserved amino acid substitutions and insertions are underlined. The highly conserved PEFXG motif implicated in OmpK36 function is shown in bold (12).
bapenem resistance. Allelic replacement with a fragment tagged with the hygromycin resistance gene from pMQ300 (13) (see Fig. S1 in the supplemental material) was facilitated by λ-Red recombination as described previously (14). The XJ-2-derived mutant remained positive for \textit{bla}_{KPC-2} despite PCR confirmation of the intended allelic exchange, suggesting the presence of a second \textit{bla}_{KPC-2} copy. For XJ-1 and XJ-4, which lacked SHV-12, DHA-1, and VIM-1, deletion of \textit{bla}_{KPC-2} resulted in a >8-fold decrease in carbapenem MICs, regardless of OmpK35 and OmpK36 expression levels (Fig. 1). Most remarkably, XJ-1, which exhibited MICs in excess of 32 mg/liter for all three carbapenems, no detectable OmpK35, and deficient expression of OmpK36, became sensitive to evade carbapenems (4–6, 12, 15, 16).

<table>
<thead>
<tr>
<th>Straina</th>
<th>MLST</th>
<th>\textit{β}-Lactamase profileb</th>
<th>MIC (mg/liter)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 13883</td>
<td>NA d</td>
<td>ND, ND, ND, ND, ND</td>
<td>ND, ND, ND, ND</td>
</tr>
<tr>
<td>ATCC 25922</td>
<td>NA</td>
<td>ND, ND, ND, ND, ND</td>
<td>ND, ND, ND, ND</td>
</tr>
<tr>
<td>XJ-1</td>
<td>ST977</td>
<td>+, −, +, +, −</td>
<td>≥32, ≥32, ≥256, ≥32, ≥32</td>
</tr>
<tr>
<td>ΔXJ-1</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, 0.3, 0.1, 0.5</td>
<td></td>
</tr>
<tr>
<td>XJ-2</td>
<td>ST65</td>
<td>+, +, +, +, −</td>
<td>≥32, ≥32, 4, 4, 2</td>
</tr>
<tr>
<td>ΔXJ-3</td>
<td>ST423</td>
<td>+, +, +, +, −</td>
<td>≥32, ≥32, ≥256, ≥32, ≥32</td>
</tr>
<tr>
<td>ΔXJ-4</td>
<td>ST11</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, ≥256, ≥32, ≥32</td>
</tr>
<tr>
<td>XJ-4</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, 6, 0.3, 0.3, 0.3</td>
<td></td>
</tr>
<tr>
<td>XJ-5</td>
<td>ST11</td>
<td>+, +, +, +, −</td>
<td>≥32, ≥32, ≥256, ≥32, ≥32</td>
</tr>
<tr>
<td>ΔXJ-5</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, ≥256, 4, 4, 2</td>
<td></td>
</tr>
<tr>
<td>XJ-6</td>
<td>ST11</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, ≥256, ≥32, ≥32</td>
</tr>
<tr>
<td>ΔXJ-6</td>
<td>−, −, +, +, −</td>
<td>≥32, ≥32, ≥256, 0.5, 0.25, 6</td>
<td></td>
</tr>
</tbody>
</table>

a Strain names prefixed with Δ correspond to \textit{bla}_{KPC-2}-minus mutants.

b Predicted \textit{β}-lactamase profile based on PCR detection of the following genes: \textit{bla}_{KPC-2} (KPC), \textit{bla}_{SHV-12} (SHV), \textit{bla}_{CTX-M-14} (CTX), \textit{bla}_{TEM-1} (TEM), \textit{bla}_{VIM-1} (VIM), and \textit{bla}_{DHA-1} (DHA). +, amplicon produced; −, no amplicon produced.

c MICs were determined by Etest. AMP, ampicillin; CTX, cefotaxime; CAZ, ceftazidime; IMP, imipenem; MEM, meropenem; ETM, ertapenem.

d NA, not applicable.

e ND, not determined.

ACKNOWLEDGMENTS

We are grateful to Ewan M. Harrison and Eva Horvath-Papp (University of Leicester) for technical assistance.

This work was supported by National Clinical Key Subject and National Natural Science Foundation of China (grant no. 81071936) and Science and Technology Commission of Shanghai Municipality (grant no. 114119a0500) grants to X.J. and a Medisearch, Leicestershire, grant to K.R.

There are no conflicts of interest to declare.

REFERENCES

