Novel Plasmid-Borne Multidrug Resistance Gene Cluster Including \textit{lsa}(E) from a Linezolid-Resistant \textit{Enterococcus faecium} Isolate of Swine Origin

Hongbin Si, Wang-Jiang Zhang, Shengbo Chu, Xi-Mei Wang, Lei Dai, Xin Hua, Zhimin Dong, Stefan Schwarz, Siguo Liu

College of Animal Sciences and Technology, Guangxi University, Nanning, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Maniearsee, Germany

A novel nonconjugative plasmid of 28,489 bp from a porcine linezolid-resistant \textit{Enterococcus faecium} isolate was completely sequenced. This plasmid harbored a novel type of multidrug resistance gene cluster that comprised the resistance genes \textit{lnu}(B), \textit{lsa}(E), \textit{spw}, \textit{ade}, \textit{aphA3}, and two copies of \textit{erm}(B), which account for resistance to macrolides, lincosamides, streptogramins, pleuromutilins, streptomycin, spectinomycin, and kanamycin/neomycin. Structural comparisons suggested that this plasmid might have developed from other enterococcal plasmids by insertion element (IS)-mediated interplasmid recombination processes.

During recent years, several ABC transporters were identified in staphylococci, streptococci, and enterococci that confer combined resistance to pleuromutilins, lincosamides, and streptogramin A antibiotics (PLS\textsubscript{A}). The corresponding genes are \textit{vgA}(A) and \textit{vgA}v (1), \textit{vgC}(C) (2), \textit{vgE}(E) (3), \textit{vgEv} (4), \textit{eav}(A) (5), \textit{sal}(A) (6, 7), \textit{lsa}(A) (8), \textit{lsa}(C) (9), and \textit{lsa}(E) (10). In contrast to the aforementioned genes, the gene \textit{lsa}(B) confers only elevated MICs to lincosamides which, however, are below the clinical breakpoints for resistance (11). The \textit{lsa}(E) gene has been identified as part of plasmid-borne or chromosomal multiresistance gene clusters in methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) \textit{Staphylococcus aureus} (12–14), coagulase-negative or -variable staphylococci (7, 15), and \textit{Enterococcus} spp. (16) of human and animal origin in Europe and Asia; in human \textit{Streptococcus agalactiae} from South America (17); and, most recently, in \textit{Erysipelothrix rhusiopathiae} of swine origin in China (18). It is believed that the basic type of these multiresistance gene clusters, which comprises the resistance genes \textit{ade}, \textit{spw}, \textit{lsa}(E), and \textit{lnu}(B), has developed in \textit{Enterococcus} spp. (10, 12, 13). In the present study, a nonconjugative plasmid from \textit{Enterococcus faecium} that harbors a novel \textit{lsa}(E)-converting multiresistance gene cluster was identified and completely sequenced to gain insight into its structure and the genetic environment of \textit{lsa}(E).

Thirty-five enterococcal strains, including \textit{Enterococcus faecalis} (n = 21), \textit{Enterococcus faecium} (n = 13), and \textit{Enterococcus gallinarum} (n = 1), were isolated from a pig farm in Guangxi province, China. These isolates were investigated for the presence of the \textit{lsa}(E) gene by PCR using previously described primers (13). The \textit{lsa}(E) gene was detected in five \textit{faecalis} isolates and one isolate each of \textit{faecium} and \textit{gallinarum}. The \textit{lsa}(E) nucleotide sequences of the seven isolates were identical to those of \textit{lsa}(E) on plasmids pV7037 from MRSA ST9 and pXD4 from \textit{E. faecium} (13, 16). The six \textit{faecalis} and \textit{faecium} isolates were analyzed by multilocus sequence typing (MLST; http://www.mlst.net/). Antimicrobial susceptibility testing by broth microdilution (19, 20) revealed that except for the PLS\textsubscript{L}, phenotype, all isolates were also resistant to erythromycin, tetracycline, streptomycin, gentamicin, kanamycin, and ciprofloxacin but susceptible to ampicillin and vancomycin. Additional resistance (or elevated MICs) to rifampin, florfenicol, or linezolid was seen in five or six of the isolates (Table 1). Linezolid resistance was due to the previously described mutation at position 2576 (G2576T) in the 23S rRNA gene (21), while mutations in genes for the ribosomal proteins L3 and L4 or the \textit{cfr} gene were detected by PCR and sequence analysis (22, 23). Conjugations by filter mating and transformation experiments were conducted using \textit{E. faecalis} JH2-2 as the recipient (24). The two \textit{E. faecium} plasmids pXD4 and pN39 served as positive controls in transformation and conjugation experiments (16). Transconjugants and transformants were selected on brain heart infusion (BHI) agar supplemented with 10 mg/liter valnemulin and 50 mg/liter rifampin. Only one of the \textit{lsa}(E)-positive enterococcal isolates, namely, \textit{E. faecium} Y13, yielded a transformant after electrottransformation. This transformant (designated TY13) exhibited high MICs not only for tiamulin, valnemulin, lincomycin, and virginiamycin M1 but also for erythromycin, kanamycin, and streptomycin (Table 1). S1 nuclease pulsed-field gel electrophoresis (PFGE) combined with Southern blot analysis revealed that the \textit{lsa}(E) gene was located on a ca. 28-kb plasmid, designated pY13. This plasmid was sequenced using the 454 Life Sciences GS FLX system (Roche), and sequence assembly was further confirmed by nine overlapping PCR assays (PCR1 to PCR9) (see Table S1 in the supplemental material). Plasmid sequence analyses, comparisons, and annotations were performed as previously described (23). The complete plasmid pY13 from \textit{E. faecium} Y13 was 28,489 bp in size and contained 30 putative open reading frames.

Received 13 June 2015 Returned for modification 17 July 2015 Accepted 20 August 2015

Accepted manuscript online 31 August 2015

Address correspondence to Siguo Liu, siguo_liu@hvri.ac.cn, or Stefan Schwarz, stefan.schwarz@fli.bund.de

H.S. and W.-I.Z. contributed equally to this article.

Supplemental material for this article may be found at http://dx.doi.org/10.1128/AAC.01394-15.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Based on the classification system for plasmids from enterococci and other Gram-positive bacteria described by Jensen et al. (25), plasmid pY13 is a member of the rep1 family of plasmids. Sequence comparisons revealed a 12,461-bp region in pY13 that contained ORFs involved in plasmid replication, maintenance, and transfer and exhibited 99% identity to plasmid pM7M2 from a dairy-derived E. faecium isolate (26) (Fig. 1).

Within this region, a 7,118-bp segment showed 99% identity to the corresponding sequence of plasmid p3 from a vancomycin-resistant E. faecium ST203 isolate of human origin (27). Upstream of an IS\(\text{Efa8}\) element, a prgOPN gene cluster was detected. Previous studies demonstrated that the prgOPN gene cluster may represent a toxin-antitoxin–independent stabilization mechanism and may be involved in the persistence and distribution of antibiotic resistance plasmids (28,29). The prgP-prgO genes may represent the most common partition cassettes in enterococci (30).

A region of 8,705 bp in pY13, which is bracketed on the left-

TABLE 1 Antimicrobial susceptibility of the seven lsa(E)-carrying enterococcal isolates, a transformant, and a recipient strain used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>MLST type</th>
<th>GEN</th>
<th>KAN</th>
<th>VIR M1</th>
<th>STR</th>
<th>LIN</th>
<th>TIA</th>
<th>VAL</th>
<th>ERY</th>
<th>FFC</th>
<th>TET</th>
<th>CIP</th>
<th>AMP</th>
<th>RIF</th>
<th>VAN</th>
<th>LZD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. faecalis 11-27</td>
<td>ST169</td>
<td>128</td>
<td>>256</td>
<td>>128</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>>256</td>
<td>8</td>
<td>64</td>
<td>16</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E. faecalis 12-7</td>
<td>ST220</td>
<td>>256</td>
<td>>256</td>
<td>>128</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>E. faecalis 14-1</td>
<td>ST146</td>
<td>256</td>
<td>>256</td>
<td>>128</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>>256</td>
<td>128</td>
<td>64</td>
<td>16</td>
<td>2</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. faecalis E15</td>
<td>ST283</td>
<td>128</td>
<td>>256</td>
<td>>128</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>>256</td>
<td>128</td>
<td>64</td>
<td>16</td>
<td>2</td>
<td>32</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>E. faecalis D12-2</td>
<td>ST353</td>
<td>128</td>
<td>>256</td>
<td>>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>>256</td>
<td>128</td>
<td>64</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>E. gallinarum Y15</td>
<td>NA</td>
<td>256</td>
<td>>256</td>
<td>>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>>256</td>
<td>128</td>
<td>64</td>
<td>0.5</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>E. faecium Y13</td>
<td>ST29</td>
<td>>256</td>
<td>>256</td>
<td>>128</td>
<td>256</td>
<td>128</td>
<td>>128</td>
<td>128</td>
<td>>256</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>E. faecalis TY13</td>
<td>2</td>
<td>>256</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td>>128</td>
<td>>128</td>
<td>>256</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>≤0.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>E. faecalis HJ2-2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

a GEN, gentamicin; STR, streptomycin; KAN, kanamycin; VIR M1, virginiamycin M1; LIN, lincomycin; TIA, tiamulin; VAL, valnemulin; ERY, erythromycin; FFC, florfenicol; TET, tetracycline; CIP, ciprofloxacin; AMP, ampicillin; RIF, rifampin; VAN, vancomycin; LZD, linezolid.

b Note that E. faecalis is intrinsically resistant to streptogramins.

c NA, not applicable.

d TY13 was the transformant derived from transformation of plasmid pY13 from E. faecium Y13 into E. faecalis HJ2-2.

(ORFs) (see Table S2 in the supplemental material). Based on the classification system for plasmids from enterococci and other Gram-positive bacteria described by Jensen et al. (25), plasmid pY13 is a member of the rep1 family of plasmids.

Sequence comparisons revealed a 12,461-bp region in pY13 that contained ORFs involved in plasmid replication, maintenance, and transfer and exhibited >99% identity to plasmid pM7M2 from a dairy-derived E. faecium isolate (26) (Fig. 1). Within this region, a 7,118-bp segment showed >99% identity to the corresponding sequence of plasmid p3 from a vancomycin-resistant E. faecium ST203 isolate of human origin (27). Upstream of an IS\(\text{Efa8}\) element, a prgOPN gene cluster was detected. Previous studies demonstrated that the prgOPN gene cluster may represent a toxin-antitoxin–independent stabilization mechanism and may be involved in the persistence and distribution of antibiotic resistance plasmids (28,29). The prgP-prgO genes may represent the most common partition cassettes in enterococci (30). A region of 8,705 bp in pY13, which is bracketed on the left-

[FIG 1 Linear comparison of the lsa(E)-carrying plasmid pY13 (GenBank accession no. KR936172) with enterococcal and staphylococcal plasmids pXD4, pXD5, pM7M2, pV7037, and p3. Arrows, positions and directions of transcription of the genes; shading, regions of >99% nucleotide sequence identity in the different plasmids; black arrowheads, the nine overlapping PCRs (PCR1 to PCR9) designed to confirm the pY13 plasmid and the genetic environment of the lsa(E) gene; ∆, a truncated gene.]
hand side by an IS6100 element and on the right-hand side by an IS1216 element, contains the five antimicrobial resistance genes *lnu*(B) (lincomamide resistance), *lsa*(E) (PLS, resistance), *spw* (spectinomycin resistance), *aadE* (streptomyacin resistance), and *erm*(B) (macrolide-lincosamide-streptogramin B resistance). This region corresponded closely to the regions identified on plasmid pV7037 from MRSA ST9 (13) and on plasmids pXD4 (16) and pXD5 (31) from *E. faecium* (Fig. 1). Further downstream of *lnu*(B), an apha3 gene for kanamycin/neomycin resistance and another copy of the *erm*(B) gene were detected in the pY13 sequence (Fig. 1). The MICs of the transformant TY13 (Table 1) indicated that all six antimicrobial resistance genes of plasmid pY13 are functionally active. Structural comparisons suggested that pY13 is composed of various segments, which have been found, at least in part, on other enterooccal or staphylococcal plasmids (Fig. 1). Since all of these segments are flanked by intact or truncated insertion sequences, it is possible that pY13 developed from interplasmidic recombination events in which insertion sequences, such as IS6100, IS1216, and IS1542, have been involved.

S1 nuclease-PFGE combined with Southern blotting revealed that the *lsa*(E) gene was also located on plasmids of ca. 28 kb in the remaining five *E. faecalis* isolates and on a plasmid of ca. 40 kb in the *E. gallinarum* isolate (see Fig. S1 in the supplemental material). To investigate whether a pY13-like plasmid is present in these isolates, eight overlapping PCRs were designed (Fig. 1, PCR1 to PCR9; see also Table S1 in the supplemental material) to amplify eight partly overlapping regions covering the entire sequence of pY13. Subsequently, the purified PCR products were cloned into the vector pEASY-T1 and then sequenced by primer walking (Invitrogen, Beijing, China). Results showed that all five *E. faecalis* strains carried virtually the same pY13-like plasmid except for a few nucleotide substitutions, whereas the *E. gallinarum* strain was only positive for PCR3 to PCR6. Although the reason(s) that these pY13-like plasmids were not transferable by electrottransformation into *E. faecalis* JH2-2 remains to be elucidated, these observations suggested that pY13-like plasmids have spread among different *E. faecalis* strains and play a role in the dissemination of *lsa*(E)-carrying multiresistance gene clusters.

In conclusion, we report the first complete sequence of a *lsa*(E)-harboring plasmid from an *E. faecium* isolate of swine origin. Although nonconjugative, pY13-like plasmids may act as vectors in the dissemination of antimicrobial multiresistance within the Gram-positive gene pool.

Nucleotide sequence accession number.

The sequence of plasmid pY13 has been deposited in GenBank under accession no. KR936172. The sequences of the five pY13-like plasmids from *E. faecalis*, i.e., p11-27 (28,489 bp) (KT448817), pE15 (28,490 bp) (KT448821), pD12 (28,491 bp) (KT448818), pD14-1 (28,492 bp) (KT448819), and as well as the sequence of a 15,464-bp segment of plasmid pY15 (KT448822) from *E. gallinarum*, have also been deposited in GenBank.

ACKNOWLEDGMENTS.

This work was funded by the Guangxi Natural Science Foundation Programs (2012GXSNSFBA050352 and 2013GXNSFFAA190707) and the National Natural Science Foundation of China (31201862).

The contribution of S.S. was funded by the German Federal Ministry of Education and Research (BMBF) through the German Aerospace Center (DLR) (01K11301D [MedVet-Staph II]).

We thank X. D. Du (Hunan Agricultural University) for providing plasmids pXD4 and pN39 as controls for conjugation and transformation experiments.

REFERENCES.

