In Vitro Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa

João Pires, Thissa N. Siriwardena, Michaela Stach, Regula Tinguely, Sara Kasraian, Francesco Luzzaro, Stephen L. Leib, Tamis Darbre, Jean-Louis Reymond, Andrea Endimiani

Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Laboratory of Microbiology, A. Manzoni Hospital, Lecco, Italy; Biology Division, The Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland

The *in vitro* activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 *Acinetobacter baumannii* (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 *Pseudomonas aeruginosa* (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collected showed MIC₅₀/₉₀ values of 8/8 g/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC₅₀/₉₀) of 8/8 g/ml for G3KL.

The spread of *Acinetobacter baumannii* and *Pseudomonas aeruginosa* isolates that are resistant to carbapenem antibiotics due to the production of carbapenemases represents a serious threat (1). These strains are usually multidrug-resistant (MDR) due to the coexpression of mechanisms involving other classes of antibiotics, thus drastically limiting our therapeutic armamentarium (2–4). In particular, extensively drug-resistant (XDR) isolates are commonly detected worldwide (5), whereas the prevalence of pandrug-resistant (PDR) isolates is increasing worryingly in several countries (6–8). Therefore, novel antimicrobial strategies need to be rapidly developed.

Recently, there has been a rising interest in evaluating naturally occurring or synthetic antimicrobial peptides (AMPs) with activity against prokaryotic membranes. This attention is due to their wide spectrum of activity against both Gram-positive and Gram-negative species, potent bactericidal activity, and ability to bypass common mechanisms of resistance that affect standard antibiotics (9, 10). However, several reasons have so far limited the clinical implementation of AMPs: (i) high susceptibility to degradation by endogenous and microbial proteases; (ii) toxicity due to the high concentration necessary to inhibit bacteria; and (iii) short half-life because of high protein binding (11). Several authors have modified AMPs to obtain proteolytically resistant versions, mostly by sequence variations and the use of α-amino acids (12–15). However, redesigning the peptide chain topology, in particular by introducing multiple branching points to obtain synthetic AMP dendrimers (AMPDs), seems a promising solution to overcome all of the the aforementioned problems (16–18).

G3KL is a novel AMP dendrimer (AMPD) developed at the Department of Chemistry and Biochemistry of the University of Bern (Switzerland) by sequence optimization of an initial hit compound identified by screening a combinatorial library of dendrimers using a tailored high-throughput screening assay and presumed to act as a membrane-disrupting agent (19–22). Its activity requires a dendritic topology and only natural lysine and leucine residues alternating in the branches (Fig. 1). This novel AMPD has demonstrated *in vitro* activity against several Gram-negative strains, low toxicity to human red blood cells (minimal hemolytic concentration of 840 µg/ml versus ≥2,000 µg/ml for polymyxin B), stability in human serum (half-life [t½] of ~18 h and MICs of 2 and 4 µg/ml for *P. aeruginosa* PAO1 in Mueller-Hinton medium with or without 30% human serum, respectively), and easy preparation by standard solid-phase peptide synthesis; attempts to identify G3KL-resistant strains were also unsuccessful (21).

In the present work, we analyzed the *in vitro* activity of G3KL against 32 *A. baumannii* and 35 *P. aeruginosa* isolates collected in different countries during diverse periods. Species identification was confirmed by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (Bruker), whereas MICs for different classes of antibiotics were obtained in cation-adjusted Mueller-Hinton II (CAMHII) broth (BBL) using the microdilution GNX2F panels (Trek Diagnostics Systems). MICs were interpreted according to the CLSI criteria (23). *P. aeruginosa* ATCC 27853 was used as the control. For G3KL, MICs were also achieved in microdilution in CAMHII broth using both polystyrene and polypropylene 96-well plates (24). The minimum bactericidal concentration (MBC) for G3KL was then obtained by culturing 30 µl of the broth from the endpoint well and from the log₂ dilution above the MIC onto CAMHII agar plates (BBL) (25). For several strains, carbapenemase genes were already characterized (26–29); the presence of β-lactamase genes (including class A, class C beta-lactamases) were also confirmed.

References

4. Accepted manuscript posted online 12 October 2015.

6. Address correspondence to Andrea Endimiani, andrea.endimiani@ifik.unibe.ch.

7. Supplemental material for this article may be found at http://dx.doi.org/10.1128/AAC.01853-15.

8. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
B, and D carbapenemases) in the remaining isolates was analyzed by implementing the CT103XL microarray (CheckPoints). Phenotypic analysis indicated that among the 32 *A. baumannii* isolates, there were 5 MDR, 24 XDR, and 1 PDR isolate, whereas the 35 *P. aeruginosa* isolates included 8 MDR, 19 XDR, and 2 PDR strains (5). Moreover, several of these strains tested produced the most frequently detected class D (10 OXA-23, 7 OXA-24, and 11 OXA-58) and class B (18 VIM and 3 IMP) carbapenemases described in *A. baumannii* and *P. aeruginosa*, respectively (see Tables S1 and S2 in the supplemental material) (1). As shown in Table 1, the isolates of both species possessed very high MICs for β-lactams (e.g., MIC_{50} values for meropenem of ≥16 μg/ml), aminoglycosides (e.g., MIC_{50} values for gentamicin of ≥16 μg/ml), and ciprofloxacin (MIC_{50} values of ≥4 μg/ml); the only standard antibiotics maintaining in vitro activity (≥80%) were colistin and polymyxin B.

For G3KL, polypropylene plates were used to avoid any hypothetical attachment (and therefore effect on the MICs) of the positively charged AMPD to the surface of the polystyrene wells (21). Overall, G3KL showed MIC_{50/90} values of 8/8 μg/ml and MBCs at which 50% or 90% of strains tested are killed (MBC_{50/90}) of 8/8 μg/ml for both *A. baumannii* and *P. aeruginosa* strains regardless of the plate used, though slightly lower MIC/MBC ranges were observed for polypropylene plates (Table 1). Given the fact that the recorded MBCs were mostly equal to the corresponding MICs (overall, 64 out of 67 strains tested with polypropylene plates and 51 out of 67 strains tested with polystyrene plates; see Tables S1 and S2 in the supplemental material), G3KL has a putative bactericidal effect (30).

Previous studies have assessed the MICs and MBCs of modified AMPs against *A. baumannii* and *P. aeruginosa*, these being in general higher than those obtained for G3KL (e.g., for *P. aerugi-
TABLE 1 Overall phenotypic results for standard antibiotics and G3KL antimicrobial peptide dendrimer tested against the collection of 67 isolates

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>MIC (or MBC where indicated) (µg/ml) and susceptibility results for isolates of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. baumannii (n = 32)</td>
</tr>
<tr>
<td></td>
<td>MIC50</td>
</tr>
<tr>
<td>Ticarcillin-clavulanate</td>
<td>≥256</td>
</tr>
<tr>
<td>Cefazidime</td>
<td>≥32</td>
</tr>
<tr>
<td>Cefepime</td>
<td>≥32</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>≥32</td>
</tr>
<tr>
<td>Imipenem</td>
<td>≥16</td>
</tr>
<tr>
<td>Meropenem</td>
<td>≥16</td>
</tr>
<tr>
<td>Doripenem</td>
<td>≤4</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>≥16</td>
</tr>
<tr>
<td>Amikacin</td>
<td>≥64</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≥4</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>1</td>
</tr>
<tr>
<td>Colistin</td>
<td>0.5</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>0.5</td>
</tr>
</tbody>
</table>

G3KL

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MBC50/90</th>
<th>MBC90</th>
<th>MIC range</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3KL</td>
<td>8 (8)</td>
<td>8 (8)</td>
<td>4–16 (4–8)</td>
<td>NA</td>
</tr>
<tr>
<td>MBCs</td>
<td>8 (8)</td>
<td>8 (8)</td>
<td>4–16 (4–8)</td>
<td>NA</td>
</tr>
</tbody>
</table>

a Includes 5 MDR isolates (4 OXA-58 producers and 1 carbapenemase negative), 24 XDR isolates (10 OXA-23, 6 OXA-24, and 7 OXA-58 producers and 1 carbapenemase negative), and 1 PDR isolate (OXA-24 producer) (see Table S1 in the supplemental material).

b Includes 8 MDR isolates (2 VIM and 1 IMP producer and 5 carbapenemase negative), 19 XDR isolates (15 VIM and 2 IMP producers and 2 carbapenemase negative), and 2 PDR isolates (1 VIM producer and 1 carbapenemase negative) (see Table S2 in the supplemental material).

c S, susceptible according to CLSI criteria of 2014 (23); NA, not applicable.

d Results in parentheses are those obtained with polypropylene 96-well plates.

*rosa, MICs of 150 and MBCs of 20 to >300 µg/ml were reported in references 12 and 13). However, in one study, five polycationic AMPs were tested against A. baumannii, and MIC50 values similar to those found here for G3KL were obtained, although the MIC50/MBC90 values (both ranged from 16 to 32 µg/ml) were overall higher than for G3KL (31). In another study, 15 AMPs were tested against colistin-resistant and -susceptible A. baumannii strains (1 VIM producer and 1 carbapenemase negative) (see Table S2 in the supplemental material).

In conclusion, the AMPD G3KL possesses promising in vitro activity against A. baumannii and P. aeruginosa, yielding results that are not apparently different for wild-type, MDR, XDR, and PDR isolates (either producing or not producing carbapenemases). Since G3KL does not resemble other molecules in nature, has low MIC/MBC values compared to those of other AMPs and AMPDs, and has little toxicity for red blood cells in vitro, it seems plausible that this molecule should be further investigated with tissue culture assays and animal studies to support future pharmacological formulations and potential clinical applications.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation (SNSF: project numbers 153377 to A.E. and 159941 to J.-L.R., and partially by project 138094 to S.L.L.). João Pires is a Ph.D. student (2014 to 2017) supported by SNSF (project number 153377 to A.E.).

We thank Sara Droz (Institute for Infectious Diseases, University of Bern) for providing some of the isolates used in this study.

REFERENCES

