Sphingolipids Mediate Differential Echinocandin Susceptibility in Candida albicans and Aspergillus nidulans

Kelley R. Healey,a,∗ Krishna K. Challa,a Thomas D. Edlind,b Santosh K. Katiyar,a,b

Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; a, MicrobiType LLC, Plymouth Meeting, Pennsylvania, USA

The cell wall synthesis-inhibiting echinocandins, including caspofungin and micafungin, play important roles in the treatment of candidiasis and aspergillosis. Previous studies revealed that, in the haploid yeast Candida glabrata, sphingolipid biosynthesis pathway mutations confer caspofungin reduced susceptibility (CRS) but micafungin increased susceptibility (MIS). Here, we describe one Candida albicans strain (of 10 tested) that similarly yields CRS-MIS mutants at relatively high frequency. Mutants demonstrated increased levels of long-chain bases (sphingolipid pathway intermediates) and, unique to this strain, loss of His104/Pro104 heterozygosity in the equivalent fen1Δ fen12Δ laboratory strain and in diverse wild-type strains following exogenous long-chain-base treatment. Analogous to these results, CRS-MIS was demonstrated in an Aspergillus nidulans basA mutant encoding defective sphingolipid C4-hydroxylase and in its wild-type parent exposed to long-chain bases. Sphingolipids likely modulate echinocandin interaction with their Fks membrane target in all susceptible fungi, with potential implications for optimizing therapy with existing antifungals and the development of novel agents.

Yeasts, including diploid Candida albicans and, to a lesser extent, haploid Candida glabrata, are commonly found at low levels among the normal mucosal flora. However, overgrowth of these opportunists due to reductions in the bacterial flora (e.g., following broad-spectrum antibiotic therapy) or deficiencies in cell-mediated immunity (e.g., associated with HIV/AIDS or cytotoxic chemotherapy) results in oropharyngeal or vaginal candidiasis and, furthermore, increases the risk of life-threatening systemic infection. Treatment of these and other fungal infections relies on a limited number of antifungals, specifically azoles, amphotericin B, and, increasingly, echinocandins. The latter include caspofungin, micafungin, and anidulafungin, which share a hexapeptide core but differ in their side chains, particularly their lipid moieties. In our current model for echinocandin mechanism of action, these lipid moieties target the drug to the external leaflet of the plasma membrane, where interaction with hot spot regions of Fks1 (and Fks2 in the case of C. glabrata) occurs, inhibiting the β-1,3-glucan synthase activity of this integral membrane protein (1, 2). Hot spot mutations are associated with treatment failure and, typically, cross-resistance to all three echinocandins (3).

We have previously described a novel, differential echinocandin susceptibility phenotype of C. glabrata mutants selected on low-level caspofungin (1, 4). These mutants, isolated at relatively high frequencies in 10 of 10 strains tested, exhibit caspofungin reduced susceptibility (CRS) but micafungin increased susceptibility (MIS). The responsible CRS-MIS mutations were mapped not to FKS genes but rather to FEN1, SUR4, SUR2, and IFA38, all four encoding enzymes involved in sphingolipid biosynthesis (Fig. 1). The mutations are loss of function, as evidenced by the equivalent phenotypes of gene disruptants, and result in the accumulation of sphingolipid pathway intermediates, in particular long-chain bases (LCBs), including phytosphingosine and dihydrosphingosine (Fig. 1).

In light of these results with C. glabrata, it was important to examine other fungal pathogens for their CRS-MIS potential. We report here that 1 of 10 C. albicans strains tested yielded CRS-MIS mutants at relatively high frequency. This strain was uniquely heterozygous within the sphingolipid pathway gene TSC13, and its CRS-MIS mutants exhibited loss of this heterozygosity and apparent Tsc13 loss of function as evidenced by LCB accumulation. We also report that, in the model mold Aspergillus nidulans, mutation of the SUR2 ortholog basA conferred a CRS-MIS phenotype. Finally, exogenous LCBs conferred a CRS-MIS phenotype on wild-type strains of both C. albicans and A. nidulans, as well as Candida tropicalis and Candida krusei. Together, these data further support a general role for sphingolipids in modulating echinocandin susceptibility and have potential implications for antifungal therapy.

MATERIALS AND METHODS

Strains, media, and drugs. Strains used in this study are listed in Table 1. Candida strains were cultured on or in YPD medium (1% yeast extract, 2% peptone, 2% dextrose) with or without 1.5% agar. An A. nidulans basA1 temperature-sensitive mutant and its parental strain GR5 were cultured on or in MAG medium (2% malt extract, 2% glucose, 0.2% peptone, trace elements, and vitamins) supplemented with uridine and uracil (5). Aspergillus fumigatus 293 was cultured on or in YPD or 2% dextrose-supplemented RPMI. All incubations were at 35°C (which yielded predominantly yeast rather than hyphal growth for C. albicans) except for routine propagation of A. nidulans strains, which was at 28°C. Sources and preparations of the echinocandins, myriocin, dihydrosphingosine, and phytosphingosine were described (1).

Received 29 October 2014 Returned for modification 14 November 2014 Accepted 20 March 2015

Address correspondence to Santosh K. Katiyar, santosh.katiyar@drexelmed.edu.

* Present address: Kelley R. Healey, Public Health Research Institute, New Jersey Medical School-Rutgers, Newark, New Jersey, USA.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.
doi:10.1128/AAC.04667-14
Sphingolipid analysis. Cells were grown and prepared as described previously (1). Sphingosine species were extracted and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) (6) at the Lipidomics Shared Resource of the Medical University of South Carolina (https://lipidomics.musc.edu/lipidomics-core).

Broth microdilution assays. Yeast and conidia were assayed for echinocandin susceptibility as described previously (7). For Aspergillus species, conidia were harvested by suspension in phosphate-buffered saline supplemented with 0.01% Tween 20. Suspensions were diluted to a concentration of 1×10^6 conidia/ml. Combination studies with phytosphingosine (2.5 μg/ml) and myriocin (0.5 μg/ml) were performed as described previously (1) with 1 h of preincubation prior to the addition and serial dilution of echinocandins. MIC was defined as 80% inhibition relative to drug-free control growth following 24 h of incubation.

DNA purification, amplification, and sequencing. DNA purification and conidia was performed as described previously (1). Long-chain fatty acid synthesis genes (FEN1, FEN12, IFA38, TPL1, and TSC13) and FKS1/GSC1 were PCR amplified and sequenced (for primers, see Table 2) in all C. albicans CRS-MIS mutants obtained. To examine the nucleotides encoding amino acid 104 in Tsc13, PCR products were sequenced in both directions. A. nidulans basA from the basA1 mutant and its parent strain GR5 were PCR amplified and sequenced (primes in Table 2) to confirm the Trp44Cys mutation previously described (5).

Multilocus sequence typing. Portions of 7 housekeeping genes (AAD1, AAC, ADP1, PMI1, SYA1, VPS13, and ZWF1) were PCR amplified (using the recommended primers), sequenced, and compared to the C. albicans MLST database sequences (http://calbicans.mlst.net) (8). Five strains with equivalent sequence types were obtained through MLST curator M.-E. Bougnoux (Fungal Biology and Pathogenicity Unit, Institut Pasteur, France).

C. albicans gene deletion and mutant complementation. Deletion of FEN1 and FEN12 in strain BW17 was performed with two rounds of transformation. In the first round, wild-type BW17 (ura3/ura3 his1/hs1 arg4/arg4) was transformed with a PCR-amplified CaURA3 PRODIGE cassette (for primers, see Table 2) and selection on SD-Ura as previously described (9). Transformants were screened by PCR with the indicated primers (Table 2) to identify heterozygous disruptants. Homozygous disruptants were obtained by transforming a heterozygous disruptant with a PCR-amplified CaARG4 PRODIGE cassette and selection on SD-Arg. PCR screens and sequencing (Table 2) confirmed disruption of both alleles.

Revertants of CRS-MIS mutant 34.80-C2 were constructed by transformation with a PCR product generated with wild-type SC5314 DNA and primers CaTSC13c81F and CaTSC13c605R (Table 2; both include a synonymous mutation to confirm the transformant’s origin). Transformants were selected at 42°C, a temperature which permits growth of wild-type C. albicans but restricts growth of CRS-MIS mutants. Transformants were subsequently screened to confirm loss of temperature sensitivity at 42°C, further screened by sequencing their CaTSC13c164F-CaTSC13d120R PCR products in both directions, and tested by broth microdilution for echinocandin susceptibility.

Revertants of SN95F1E12 (fen1Δ/fen1Δ fen12Δ/fen12Δ) were constructed by transformation with a PCR product generated with wild-type SC5314 DNA and primers CaFEN12u251F and CaFEN12d110R (Table 2). Transformants were selected at 42°C, screened to confirm loss of temperature sensitivity, further screened by PCR with two pairs of primers (CaFEN12c329F-CaFEN12d110R and CaFEN12u403F-CaFEN12c558R) to confirm FEN12 restoration, and tested by broth microdilution.

RESULTS

C. albicans strain 34.80 readily yields CRS-MIS mutants. C. albicans CRS mutants were selected by spreading 1×10^6 cells of 10 diverse strains on YPD plates containing caspofungin ranging in...
TABLE 1 Strains used in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>34.80</td>
<td>P. Nyirjesy (Drexel University)</td>
</tr>
<tr>
<td></td>
<td>34.80-C1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C3</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2r36</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2r37</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>209480.082</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20710-055</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>SC5314</td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td>90028</td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td>3356</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3359</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1489</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1491</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>BWP17</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>DAY286</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen1Δ/FEN1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen1Δ/FEN1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen12Δ/FEN12</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen12Δ/FEN12</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>SN95</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12r11 (fen1Δ/fen1Δ)</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12r12 (fen1Δ/fen1Δ)</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>C. tropicalis</td>
<td>20491-032</td>
</tr>
<tr>
<td></td>
<td>C. krusei</td>
<td>6258</td>
</tr>
<tr>
<td></td>
<td>A. nidulans</td>
<td>GR5</td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>293</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>34.80</td>
<td>P. Nyirjesy (Drexel University)</td>
</tr>
<tr>
<td></td>
<td>34.80-C1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C3</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2r36</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>34.80-C2r37</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>209480.082</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20710-055</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>SC5314</td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td>90028</td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td>3356</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3359</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1489</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1491</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>BWP17</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>DAY286</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen1Δ/FEN1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen1Δ/FEN1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen12Δ/FEN12</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BWP17-fen12Δ/FEN12</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>SN95</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12 (fen1Δ/fen1Δ)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12r11 (fen1Δ/fen1Δ)</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>SN95F1F12r12 (fen1Δ/fen1Δ)</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>C. tropicalis</td>
<td>20491-032</td>
</tr>
<tr>
<td></td>
<td>C. krusei</td>
<td>6258</td>
</tr>
<tr>
<td></td>
<td>A. nidulans</td>
<td>GR5</td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>293</td>
</tr>
</tbody>
</table>

concentration from 0.12 to 0.35 μg/ml, followed by incubation at 35°C for 3 to 4 days. Colonies (10 to 48 per strain) were screened for micafungin hypersusceptibility by spot assay on 0.01 μg/ml micafungin-containing YPD plates, and candidate CRS-MIS mutants were subsequently assayed by broth microdilution. Only one of these strains, the vaginal isolate 34.80, yielded CRS-MIS mutants. Subsequently, all 34.80 CRS-MIS mutants were assayed by broth microdilution. Only one of these strains, the vaginal isolate 34.80, yielded CRS-MIS mutants. These strains were confirmed by transforming SN5 with a wild-type SC5314 DNA and primers (Table 2) containing synonymous mutations to confirm the transformant’s origins. Transformants were selected at 42°C, since the growth of C. albicans CRS-MIS mutants is restricted at this temperature (Fig. 3). Two of 13 transformants (r36 and r37) exhibited 42°C tolerance, equivalent to parent 34.80 (Fig. 3A), and both were confirmed by sequencing (Fig. 2) and microdilution assay (Table 3) to represent TSC13/rsc13 revertants.

To determine if the identified tsc13/tsc13 mutation was solely responsible for CRS-MIS, representative mutant 34.80-C2 was transformed with a TSC13 PCR product generated from wild-type SC5314 DNA and primers (Table 2) containing synonymous mutations to confirm the transformant’s origins. Transformants were selected at 42°C, since the growth of C. albicans CRS-MIS mutants is restricted at this temperature (Fig. 3). Two of 13 transformants (r36 and r37) exhibited 42°C tolerance, equivalent to parent 34.80 (Fig. 3A), and both were confirmed by sequencing (Fig. 2) and microdilution assay (Table 3) to represent TSC13/rsc13 revertants.

Double disruption of FEN1 and FEN12 confers CRS-MIS in a C. albicans laboratory strain. To confirm that a mutational defect in sphingolipid biosynthesis confers CRS-MIS in C. albicans, gene disruption studies were undertaken in laboratory strains. TSC13 is likely an essential gene (candidagenome.org); consequently, the nonessential genes FEN1 (orf19.6343) and FEN12 (SUR4; orf19.908) were targeted. Compared to both parent BWP17 and marker-matched strain DAY286, heterozygous disruptants of either gene exhibited echinocandin susceptibilities that were essentially unchanged (<2-fold differences), and their homozygous disruptants exhibited only minimal CRS-MIS (4-fold differences; Table 3). Similarly, homozygous disruptants in these individual genes constructed by Sharma et al. (10) in strain SN95 by an alternative mechanism exhibited little or no change in echinocandin susceptibilities. In contrast, their double homozygous disruptant SN95F1F12 (fen1Δ/fen1Δ fen12Δ/fen12Δ) exhibited a 128-fold CRS-MIS differential (Table 3). This result was confirmed by transforming SN95F1F12 with a wild-type FEN12 PCR product followed by selection at 42°C; as noted above, C. albicans CRS-MIS mutants exhibit temperature sensitivity at 42°C. Two of 20 transformants (SN95F1F12 r11 and SN95F1F12 r12) were temperature tolerant, equivalent to parent SN95.
TABLE 2 DNA primers used in this study and their application

<table>
<thead>
<tr>
<th>Primer</th>
<th>Application</th>
<th>Sequence (5’→3’)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CaGSC1u229F</td>
<td>PCR</td>
<td>CCCATCATTGGCAAACACAACAA</td>
</tr>
<tr>
<td>CaGSC1c1738R</td>
<td>PCR</td>
<td>TAAAGTGGCCAGGAGGAGACT</td>
</tr>
<tr>
<td>CaGSC1c606R</td>
<td>Sequence</td>
<td>TGTTGACATACGGGAAGATC</td>
</tr>
<tr>
<td>CaGSC1c442F</td>
<td>Sequence</td>
<td>TATCCAGCTTGTGTCTGCTGA</td>
</tr>
<tr>
<td>CaGSC1c1073F</td>
<td>PCR</td>
<td>GTGGTAATATCTCAGGCACTT</td>
</tr>
<tr>
<td>CaGSC1c1554F</td>
<td>PCR</td>
<td>TTGGTGAGTCTAGAGAATGGG</td>
</tr>
<tr>
<td>CaGSC1c3705R</td>
<td>PCR</td>
<td>CATCATGGCATTCATACCAGCGT</td>
</tr>
<tr>
<td>CaGSC1c1581F</td>
<td>Sequence</td>
<td>TCAACATTTTGTGGCAGTGTATG</td>
</tr>
<tr>
<td>CaGSC1c2375F</td>
<td>Sequence</td>
<td>TGGTGACATACGGGAAGATC</td>
</tr>
<tr>
<td>CaGSC1c3061F</td>
<td>Sequence</td>
<td>GCTGAGTTCTTATTGCGTGC</td>
</tr>
<tr>
<td>CaGSC1c3504F</td>
<td>PCR</td>
<td>TTTCGTGCCTAGAGAATGGG</td>
</tr>
<tr>
<td>CaGSC1d41R</td>
<td>PCR</td>
<td>GAATAAACCACTTGGCCTGCC</td>
</tr>
<tr>
<td>CaGSC1c3553F</td>
<td>Sequence</td>
<td>CGCAAAATCTGTCGAAAAATTCGG</td>
</tr>
<tr>
<td>CaGSC1c4264F</td>
<td>Sequence</td>
<td>ACCGTTGTGCTGCTGAGATAG</td>
</tr>
<tr>
<td>CaGSC1c4947F</td>
<td>Sequence</td>
<td>GACTGGTGCTGTTATTGCTG</td>
</tr>
<tr>
<td>CaFEN1u159F</td>
<td>PCR and screens</td>
<td>TCCACCAACACTGAGTCC</td>
</tr>
<tr>
<td>CaFEN1d54R</td>
<td>PCR</td>
<td>ACTAGCGACAACACCCGCTA</td>
</tr>
<tr>
<td>CaFEN1c523R</td>
<td>Sequence and screens</td>
<td>AAGCAGTAGCTCCATGATGAT</td>
</tr>
<tr>
<td>CaFEN1c321F</td>
<td>Sequence</td>
<td>TCAACATTTTGTGGCAGTGTATG</td>
</tr>
<tr>
<td>CaFEN1-URA3F</td>
<td>fen1Δ/FEN1</td>
<td>ATTAAATTATCAGATTTTTTATTCTGAGTATTTAATCAGCACATTACACTAAGACC</td>
</tr>
<tr>
<td>CaFEN1-URA3R</td>
<td>fen1Δ/FEN1</td>
<td>TCAATCCATCTCTAATAGAACACTTCTTCTGACTATTATAATGGCAGTATTTTTCAGT</td>
</tr>
<tr>
<td>CaFEN1-ARG4F</td>
<td>fen1Δ/fen1Δ</td>
<td>TCAACATTTTGTGGCAGTGTATG</td>
</tr>
<tr>
<td>CaFEN1-ARG4R</td>
<td>fen1Δ/fen1Δ</td>
<td>TCAACATTTTGTGGCAGTGTATG</td>
</tr>
<tr>
<td>CaFEN12-URA3F</td>
<td>fen12Δ/FEN12</td>
<td>TCCCTTCCTTCCTATATTTTTATTTTTATTCTAATCGCTAAACACTGAGTCACTAAGACC</td>
</tr>
</tbody>
</table>
| CaFEN12-URA3R | fen12Δ/FEN12 | AACTCTCATCTGAGCTGTTGAGGATTCTTATTTTTAT TT

^a Numbers in primer names correspond to nucleotide location upstream (u) or within the coding region (c) relative to the start codon or downstream (d) relative to the stop codon.

^b Underlined regions of disruption primers correspond to selection marker sequences.

^c Lowercase nucleotides represent synonymous mutations used to confirm a transformant’s origins.

Healey et al. 3380 aac.asm.org June 2015 Volume 59 Number 6 Antimicrobial Agents and Chemotherapy

Downloaded from http://aac.asm.org on October 15, 2017 by guest
TABLE 3 Echinocandin MICs of *C. albicans* mutants relative to their parent strains and revertants

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (µg/ml)</th>
<th>Caspofungin</th>
<th>Micafungin</th>
<th>Fold differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.80</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.80-C1</td>
<td>0.25</td>
<td>0.002</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>34.80-C2</td>
<td>0.25</td>
<td>0.002</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>34.80-C3</td>
<td>0.25</td>
<td>0.004</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>34.80-C2r36</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>34.80-C2r37</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BWP17</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAY286</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BWP17-fen1Δ/FEN1</td>
<td>0.06</td>
<td>0.03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BWP17-fen1Δ/fen1Δ</td>
<td>0.06</td>
<td>0.016</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BWP17-fen12Δ/FEN12</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BWP17-fen12Δ/fen12Δ</td>
<td>0.06</td>
<td>0.03</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SN95</td>
<td>0.03</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN95F1</td>
<td>0.06</td>
<td>0.016</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SN95F12</td>
<td>0.06</td>
<td>0.016</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SN95F1F12</td>
<td>0.25</td>
<td>0.002</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>SN95F1F12r11</td>
<td>0.06</td>
<td>0.016</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SN95F1F12r12</td>
<td>0.06</td>
<td>0.016</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

FIG 2 CRS-MIS mutants of *C. albicans* strain 34.80 exhibit loss of TSC13/tsc13 heterozygosity. DNA sequence chromatograms showing TSC13/tsc13 heterozygosity in the 34.80 parent, loss of heterozygosity in representative CRS-MIS mutant 34.80-C2, and heterozygosity again in the 34.80-C2 revertant (confirmed as originating from the transforming DNA by the synonymous T-to-C mutation incorporated into primer CaTSC13c81F). For comparison, the equivalent TSC13 region from laboratory strain SC5314 is also shown.

Strain 34.80 does not represent a high-risk CRS-MIS clade.

The relatively high frequency of CRS-MIS mutation through loss of TSC13/tsc13 heterozygosity in *C. albicans* strain 34.80 is analogous to the frequent development of flucytosine resistance due to loss of FUR1/fur1 heterozygosity in clade I strains (11). We hypothesized that strain 34.80 may similarly represent a clade of “high-risk” CRS-MIS strains. To test this, strain 34.80 was subjected to multilocus sequence typing (http://calbicans.mlst.net) (8), which identified it as sequence type 124. Five strains reported to have the equivalent sequence type were obtained from the typing database curators, and their TSC13 genes were amplified and sequenced. None, however, demonstrated heterozygosity, and consistent with this, none yielded CRS-MIS mutants (data not shown).

Exogenous LCB induces CRS-MIS in wild-type *C. albicans*.

Although mutations yielding the CRS-MIS phenotype may be rare in *C. albicans*, we knew from our studies with *C. glabrata* that this phenotype could be induced in wild-type strains upon exogenous...
addition of phytosphingosine or dihydrosphingosine LCBs (1). Indeed, CRS-MIS was similarly induced in all four wild-type *C. albicans* strains tested after preincubation with phytosphingosine (Fig. 4A). Subinhibitory levels of myriocin, an inhibitor of the initial step (serine palmitoyltransferase) of LCB synthesis, did not have this effect (Fig. 4B), consistent with the mechanism previously proposed in which LCB accumulation is responsible for CRS-MIS. Indeed, myriocin partially reversed the CRS-MIS phenotype of mutant 34.80-C2, while exogenous phytosphingosine exaggerated the phenotype (Fig. 4C). As expected, phytosphingosine supplementation could overcome the effects of myriocin (Fig. 4B).

Exogenous LCB induces CRS-MIS in other susceptible fungi. To further examine the CRS-MIS spectrum, echinocandin susceptibilities were determined in additional *Candida* and *Aspergillus* species in the presence and absence of exogenous phytosphingosine. Similar to *C. glabrata* and *C. albicans*, a CRS-MIS phenotype was induced in wild-type *C. krusei* strain 6258 (4-fold CRS, 8-fold MIS), *A. fumigatus* strain 293, there was no detectable CRS with LCB supplementation, but 4- to 8-fold MIS was observed.

An *A. nidulans* sphingolipid pathway mutant exhibits CRS-MIS. The *Aspergillus basA* gene is orthologous to yeast *SUR2*, encoding sphingolipid C, hydroxylase, responsible for converting dihydrosphingosine to phytosphingosine. Unlike yeast SUR2, *Aspergillus basA* is essential, but a temperature-sensitive basA1 mutant has been isolated and characterized (5, 12). In *C. glabrata*, sur2 mutations lead to dihydrosphingosine accumulation and a CRS-MIS phenotype (1). Similarly, the *A. nidulans* basA1 mutant was shown to accumulate dihydrosphingosine (5) and indeed exhibits a CRS-MIS phenotype (64-fold differential in caspofungin compared to micafungin MIC relative to parent strain GR5) (Fig. 5). As in *C. glabrata* and *C. albicans* CRS-MIS mutants, myriocin treatment reversed the CRS-MIS phenotype of the basA1 mutant (Fig. 5).

DISCUSSION

Based on our previous studies with *C. glabrata*, we expected the potential for CRS-MIS-conferring mutations in *C. albicans*, the dominant yeast among the normal mucosal flora and a major agent of life-threatening fungal infection in the immunocompromised. Initial studies with a small number of strains that included the recent vaginal isolate 34.80 suggested that CRS-MIS mutations might be similarly common in *C. albicans*. Furthermore, sphingolipid analysis showing LCB accumulation, and sequence analysis identifying a mutation in *fen1* whose genomes have been sequenced (www.candidagenome.org), encode His104/His104, strain 34.80 encodes His104/Pro104, which undergoes loss of heterozygosity to Pro104/Pro104 in all of its CRS-MIS mutants. In addition to Pro being a nonconservative change, His at this position is well conserved in orthologs throughout the fungal kingdom (although notable exceptions include most *Aspergillus* species, where Pro is at this position). We surmise that Pro104 substitution reduces but does not eliminate *C. albicans* enoyl reductase activity, since the latter would likely have deleterious effects on growth, which were not apparent in any of the CRS-MIS mutants examined.

The relatively high frequency of CRS-MIS mutant recovery in haploid *C. glabrata* can be explained by the many possible loss-of-function mutations in any one of at least four different sphingolipid pathway enzymes. On the other hand, in the absence of heterozygosity analogous to the *TSC13/*scs13 of strain 34.80, diploid *C. albicans* would be expected to yield CRS-MIS mutants at a much lower frequency. Nonetheless, strain 34.80 established the potential for CRS-MIS in this yeast, and indeed this phenotype was demonstrated in both a homozygous *fen1Δ fen1Δ* laboratory strain and in wild-type strains treated with exogenous LCB. Evolutionarily, *C. glabrata* and *C. albicans* are relatively distant. We anticipated, therefore, that other echinocandin-susceptible fungal species would possess the potential for CRS-MIS, and this was confirmed for *C. tropicalis*, *C. krusei*, and *A. nidulans* in susceptibility assays with and without exogenous LCB. As final confirmation, an *A. nidulans* basA (SUR2 ortholog) mutant was tested and shown to exhibit CRS-MIS.
CRS-MIS has clear relevance for understanding the echinocandin mechanism of action, i.e., the differential modulation by LCBs of caspofungin compared to micafungin interaction with Fks hot spots, which we have recently shown to be adjacent to or embedded within the outer leaflet of the plasma membrane (2). Phytosphingosine is known to alter cell signaling, and consequently cell wall integrity, in vitro (13); however, we would expect cell signaling effects to impact susceptibility to caspofungin and micafungin equally. Therefore, the differential effects associated with CRS-MIS are more likely a result of the direct interaction of sphingolipids, echinocandins, and Fks proteins within the membrane environment.

For *C. glabrata*, there is indirect evidence based on the characterization of several clinical isolates that CRS-MIS mutations occur in patients, potentially in response to caspofungin treatment (1, 4). If so, then therapeutic strategies for *C. glabrata* infection involving sequential treatment with caspofungin followed by micafungin might be preferable to monotherapy. The same rationale may be applicable to *Aspergillus* infections, in light of our demonstration here of CRS-MIS in the *A. nidulans* genetic model. As with *C. glabrata*, *Aspergillus* species have haploid genomes and multiple mutational targets within the sphingolipid pathway. To date, however, no *Aspergillus* CRS-MIS mutants have been reported; this may be attributed to reduced fitness, as suggested by the observation that *basA* disruption is lethal, while a comparable *sur2* mutation is tolerated in yeast (1).

With respect to *C. albicans*, the data presented here suggest that CRS-MIS mutants are likely to be rare, and consistent with this we were unable to identify such mutants in a large collection of clinical isolates for which caspofungin and micafungin susceptibility data were available (14) (data not shown). Interestingly, however, caspofungin treatment of *C. albicans* cells has been reported to downregulate expression of *FEN12* (15), which could lead to a transient increase in LCBs that would enhance micafungin susceptibility. Whether or not this mechanism operates and can be exploited to improve echinocandin therapy of *C. albicans* infection warrants further study.

ACKNOWLEDGMENTS

We thank D. Diekema, M. Pfaller, M. Castanheira, P. Nyirjesy, and M. E. Bougnoux for *Candida* strains, S. Harris for *A. nidulans* GR5 and *basA1*.
strains, and K. Ganesan for *C. albicans* SN95 and its fen1∆ fen12∆ disruptants.

These studies were supported by National Institutes of Health grants R56AI100580 and AI075272 and Astellas Investigator-Initiated Research grant 251117.

REFERENCES

