Alkaloids as Inhibitors of Malate Synthase from *Paracoccidioides* spp.: Receptor-Ligand Interaction-Based Virtual Screening and Molecular Docking Studies, Antifungal Activity, and the Adhesion Process

Fausto Guimaraes Costa,b Benedito Rodrigues da Silva Neto,a Ricardo Lemes Gonçalves,b Roosevelt Alves da Silva,b Cecília Maria Alves de Oliveira,c Lucília Kato,c Carla dos Santos Freitas,c Maria José Soares Mendes Giannini,d Julhiany de Fátima da Silva,d Célia Maria de Almeida Soares,d Maristela Pereiraa

Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Laboratório de Micologia Clínica, Universidade Estadual Júlio de Mesquita Melo, Araraquara, São Paulo, Brazil; Núcleo Colaborativo de BioSistemas, Regional Jataí, Universidade Federal de Goiás, Jataí, Goiás, Brazil; Laboratório de Micologia Clínica, Universidade Estadual Júlio de Mesquita Melo, Araraquara, São Paulo, Brazil

Paracoccidioides is the agent of paracoccidioidomycosis. Malate synthase plays a crucial role in the pathogenicity and virulence of various fungi, such as those that are human pathogens. Thus, an inhibitor of this enzyme may be used as a powerful antifungal without side effects in patients once these enzymes are absent in humans. Here, we searched for compounds with inhibitory capacity against the malate synthase of *Paracoccidioides* species (PbMLS). The three-dimensional (3D) structure of PbMLS was determined using the I-TASSER server. Compounds were selected from the ZINC database. Based on the mechanism underlying the interaction of the compounds with PbMLS, it was possible to identify β-carboline moiety as a standard key structure. The compounds with β-carboline moiety that are available in our laboratories were investigated. A total of nine alkaloid compounds were selected. The primary mechanisms of interaction of the alkaloid compounds in the binding pocket of PbMLS were identified and compared with the mechanism of interaction of acetyl coenzyme A (acetyl-CoA). We discovered that the amphipathic nature of the compounds, concomitant with the presence of β-carboline moiety, was crucial for their stability in the binding pocket of PbMLS. In addition, the importance of a critical balance of the polar and nonpolar contacts of the compounds in this region was observed. Four β-carboline alkaloid compounds showed the ability to inhibit recombinant PbMLS (PbMLSr) activity, *Paracoccidioides* species growth, and adhesion of the fungus and PbMLSr to the extracellular matrix components. The cytotoxicity of the alkaloids was also evaluated.

Several plants, human-pathogenic fungi, and bacteria utilize the glyoxylate cycle during host infection (1). The unique enzymes of this cycle are isocitrate lyase and malate synthase. This pathway has not been observed in mammals; therefore, this cycle has been identified as a potential target for the discovery of new drugs. Novel active molecules should shorten the duration of chemotherapy, prevent the development of resistance, and eliminate latent disease.

In the human-pathogenic fungi from the genus *Paracoccidioides*, the malate synthase (PbMLS) participates in the glyoxylate pathway, which enables the fungus to assimilate two-carbon compounds, and in the allantoin degradation pathway associated with purine metabolism, which allows the fungus to use nitrogen compounds (2). PbMLS is localized in peroxisomes and on the cell surface and is secreted. In addition, PbMLS plays a role as an adenin, mediating the adhesion and internalization of the fungus to host cells (3). PbMLS is regulated during the transition from mycelium to yeast (4) and in oxidative stress (5). However, an inhibitor to PbMLS has not yet been investigated.

In recent years, virtual screening has become an accepted tool in drug discovery that has successfully been applied in a number of therapeutic programs, particularly at the lead discovery stage, during which high-throughput molecular docking can play an important role (6, 7). Receptor-ligand interaction-based virtual screening can dock each molecule of a library into the receptor binding site of a known or predicted three-dimensional (3D) structure to predict the highest affinity between a protein and its ligands (8). The molecules of the library are ranked according to their predicted binding affinity with the receptor. In addition to the time and cost savings associated with the discovery of ligands for a protein target, an additional benefit is the increased specificity of the predicted ligands, because receptor-ligand interaction-based virtual screening is directed against a known binding site or even against a particular receptor conformation (9).

The analysis of the chemical structure of the compounds from virtual screening revealed that the top compounds selected by the affinity and efficiency parameters had structural similarity to the β-carboline alkaloids, mainly due to its indole moiety. In addition, the literature survey showed that this class of alkaloids has a
range of biological activity (10), including antifungal activity against Candida albicans (11). Next, a series of β-carboline alkaloids isolated by our research group from Rubiaceae and Apocynaceae species were introduced in this study.

In this paper, we report candidate inhibitors of PbMLS that were obtained through receptor-ligand interaction-based virtual screening and molecular docking studies and β-carboline alkaloids that inhibit PbMLS, Paracoccidioides spp., and the adhesion process. The cytotoxicity of the alkaloids was also evaluated.

MATERIALS AND METHODS

Receptor preparations. Here, we propose a homology-based model of PbMLS based on the 3D structures of Escherichia coli and Bacillus anthracis malate synthase A (PDB ID: 3CV1A) as the template (12), because the 3D structure of PbMLS has not been resolved. This model was built using the I-TASSER server (13). The quality of the predicted structure was assessed using the NIH-Molecular Biology Institute (MBI) laboratory servers with Errat (14). The Ramachandran plot of PbMLS was prepared on the RAMPAGE Web server (15), and the Verify3D server was used to evaluate the environments of the amino acids (16). The molecular dynamics (MD) simulations of this structure were performed with Gromacs (17–19) to reproduce the structural stability of this receptor in its native environment. The protocol used here to structure refinement is the same as that recently used to predict the structure of the glyoxylate cycle of Paracoccidioides spp. (PhICL) (20).

Ligand preparations. The structures of compounds were obtained from the ZINC database (21). A total of 89,415 compounds were selected for testing without any selection criteria and without any modification to the original files. The 3D structures of the alkaloid compounds were generated using the GlycoBioChem PRODRG2 server (22).

Molecular docking. Molecular docking tests were performed with AutoDock Vina (23) limited to a grid involving all pockets of the protein, which were defined using DoGSiteScorer, an active-site prediction and analysis server (24). The grid was defined using MGLTools to involve the pockets of PbMLS. In this case, to increase the efficiency of the sampling, 1,000 independent simulations were performed in addition to those already performed using AutoDock Vina, with an exhaustiveness of 8. AutoDock Vina uses a conformation-independent function, g, given by

\[
g = \frac{c_{\text{inter}}}{1 + wN_{\text{rot}}}
\]

where \(N_{\text{rot}} \) is the number of active rotatable bonds between the heavy atoms in the ligand (torsions), and \(w \) is the associated weight. Because of the exhaustive sampling performed for each ligand, we nullified the effects of torsion considered in equation 1 and defined the term \(c_{\text{inter}} \) as the AutoDock Vina energy and the \(g \) values as the AutoDock Vina scores. The function \(c_{\text{inter}} \) is able to incorporate the main contributions to the binding free energy, which depends on the distance between the atoms. The interactions of type H-bonds, π or σ interactions (Pi), and sigma interactions were not treated separately but were effectively merged into a dependent function of the distance between the atoms.

Ligand efficiency. Abad-Zapatero (25) proposed a simple function able to select compounds not only by affinity but also by efficiency criteria. Such function depends on the binding energy \(\Delta G \) between the ligand and receptor and the total number \(n \) of atoms, which classifies the efficiency of ligands (EL) according to their size. Compounds with fewer atoms and higher affinity are considered more efficient. To this end, we replaced \(\Delta G \) in equation 2 by the AutoDock Vina score to proceed with the selection of ligands with a lower binding energy, because the score is limited to a maximum preset. This ensures the selection of small ligands and stability in the binding pocket:

\[
\text{EL} = \frac{\Delta G}{n}
\]
trations of the alkaloid compounds ranging from 6 to 36 μg/ml were tested (data not shown) to find the concentration that inhibited PbMLS activity. All of the experiments were conducted in triplicate.

MICs. *Paracoccidioides brasiliensis* strain 18 (Pb18) yeast cells were cultivated on Fava-Netto’s medium (1.0% [wt/vol] peptone, 0.5% [wt/vol] yeast extract, 0.3% [wt/vol] proteose peptone, 0.5% [wt/vol] beef extract, 0.5% [wt/vol] NaCl, 4% [wt/vol] glucose, and 1.4% [wt/vol] agar [pH 7.2]) (32) for 7 days at 36°C.

The method in CLSI M27-A3 (33) is not available for use with dimorphic fungi, such as those of the *Paracoccidioides* genus. So, in this study, to determine the MIC and to evaluate the growth of Pb18 yeast cells, we chose to use the standard method described by de Paula e Silva et al. (34), which is a colorimetric method based on document M27-A3 (33) but with adaptations and the addition of alamarBlue (BioSource, Carlsbad, CA, USA).

Inocula were prepared in RPMI 1640 (Invitrogen, Carlsbad, CA, USA) with 1-glutamine, without sodium bicarbonate, supplemented with 2% glucose, and buffered to pH 7.0 using 0.165 M morpholinepropanesulfonic acid (MOPS) (Sigma, St. Louis, MO, USA). The Pb18 yeast cell suspension was adjusted to a final concentration in the range of 0.5 × 10⁶ to 2.5 × 10⁶ cells/ml in RPMI 1640. In the 96-well plates, the compounds were placed in serial dilutions at concentrations ranging from 6 μg/ml to 300 μg/ml. The plates were incubated at 36°C and 150 rpm for 48 h. After this period, alamarBlue (BioSource) was employed, according to the manufacturer’s instructions, and the plates were incubated for an additional 24 h for a total of 72 h prior to the final MIC reading. The lowest antifungal agent concentration that substantially inhibited the growth of the organism was visually determined at the point at which there was no change in the original blue color of the reagent.

Ligand affinity assays. Far-Western blot assays were carried out as previously described (3). PbMLSr was subjected to SDS-PAGE and blotted onto a nylon membrane. After blocking for 4 h with 1.5% bovine serum albumin (BSA) in 10 mM phosphate-buffered saline (PBS)-skim milk and washing three times for (10 min each time) in 10 mM Trition X-100 in PBS (PBS-T), the membranes were incubated with 20 μg/ml fibronectin or 30 μg/ml type I and IV collagen diluted in PBS-T with 2% BSA for 90 min and then washed three times (for 10 min each time) in PBS-T. Each compound was added at a concentration of 60 μg/ml. The membranes were incubated for 18 h with rabbit anti-fibronectin, anti-type I collagen, or anti-type IV collagen antibodies in PBS-T with 2% BSA (diluted 1:100). The blots were washed with PBS-T and incubated with peroxidase-labeled goat anti-rabbit immunoglobulin (diluted 1:1,000). The blots were washed with PBS-T, and the reactive signals were developed with hydrogen peroxide and diaminobenzidine (Sigma, St. Louis, MO, USA) as the chromogenic reagent. The positive control was obtained by incubating PbMLSr with the polyclonal anti-PbMLSr antibody (diluted 1:500), and the reaction was developed as described above.

ELISA. Enzyme-linked immunosorbent assay (ELISA) was carried out as described by Neto et al. (3). Briefly, polystyrene 96-well microtitre ELISA plates were sensitized with 10 μg/ml extracellular matrix (ECM) proteins overnight at 4°C and then blocked with 2% BSA, 10% fetal bovine serum (FBS), and 1% skim milk. To analyze the percentage of the inhibition of the adhesion of Pb18 yeast cells to the ECM by the tested compounds, each compound was added separately at a concentration of 60 μg/ml, and the mixture was incubated for 60 min. A total of 10⁶ cells/ml of Pb18 yeast cells were added and incubated for 16 h at 37°C. To analyze the percentage of the inhibition of the adhesion of PbMLSr to the ECM (ratio 1:1; 5 μg each), PbMLSr and each compound at a concentration of 60 μg/ml was separately added to the plate. The percent inhibition of PbMLSr and Pb18 yeast cell adhesion to the ECM by the tested compounds was calculated.

The reaction was developed using buffer citrate at pH 4.9 conjugated with o-phenylenediamine as the chromogenic substrate. Negative controls were performed using PbMLSr or ECM only. The positive controls were performed using anti-PbMLSr, anti-fibronectin, anti-type I collagen, or anti-type IV collagen antibody. The absorbance at 490 nm was measured, and the results were analyzed using the MicroCal Origin software version 5.0 (35).

Adhesion assays and fluorescence microscopy by IN Cell. The A549 and MRC5 cell lines were used for adhesion assays to evaluate the pattern of adherence of PbMLSr and Pb18 yeast cells, as described by Mendes-Giannini et al. (36). A549 is a human lung adenosquamous cell line obtained from the American Type Culture Collection (Rockville, MD). These cells were cultured in Ham’s F-12 medium supplemented with 10% heat-inactivated fetal calf serum. The MRC5 cell line was developed from lung tissue, and the cell morphology is fibroblast-like. These cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supplemented with 10% heat-inactivated fetal calf serum. The cells were grown in 75-mm² bottles (Corning) and maintained at 36.5°C.

After 3 to 4 days, the cell line monolayer formed was trypsinized, and 96-well cell plates were prepared with 5 × 10⁴ cells/ml. Briefly, the cell monolayer was washed with 1 ml of 0.2% trypsin solution and 0.02% Versene (ATV), and then 1 ml of ATV was added. In the following 1 to 2 min, the cells were mixed with various amounts of their corresponding medium plus 10% FBS. At this stage, the trypsin was neutralized by the 10% FBS present in the culture medium. The total volume of the cell suspension obtained was transferred to new bottles to obtain cell concentrations of 10⁶ cells/ml. The cells were subcultured 2 days in advance. This procedure included trypsinization with 2 ml of ATV and the addition of 20 ml of culture medium. Five hundred microliters of this mixture was placed on coverslips in each well of a 24-well plate (5 × 10⁵ cells/well).

A concentration of 60 μg/ml each compound was added per well. After adjusting the Pb18 yeast cell inoculum (1 × 10⁶ to 5 × 10⁵ cells/ml), the infection was performed for 15 h. For the PbMLSr assays, a concentration of 5 μg/ml each compound was used. The controls containing Pb18 yeast cell inoculum (1 × 10⁶ to 5 × 10⁵ cells/ml) or PbMLSr without addition of the compounds were developed. Initially, the old medium was removed from the wells containing the cell line monolayer, and 100 μl of fresh medium was added to each corresponding plate well and then incubated at 37°C for 2 h. The infected plates were washed three times with PBS, fixed with 500 μl of 4% p-formaldehyde, and incubated overnight at 4°C.

To perform the indirect immunofluorescence assay, the fixed cells were permeabilized with 0.25% Triton X-100 in PBS (PBS-T) and incubated at room temperature for 30 min. After washing with PBS-T, cells were incubated with blocking solution (2.5% BSA, 1% skim milk, 8% fetal bovine serum) for 30 min at room temperature. After that, the blocking solution was discarded, and polyclonal anti-Paracoccidioides antibody (1:100) in blocking solution was added and incubated at 37°C for 1 h. After washing with PBS-T, the monolayer of cells was incubated with secondary antibody anti-rabbit IgG conjugated with Alexa 594-conjugated antibody (1:400) at 37°C for 1 h. Following, the ECM was labeled with anti-fibronectin or anti-collagen I or IV antibody (1:100) at 37°C for 1 h. After washing with PBS-T, the monolayer was incubated with anti-rabbit IgG conjugated with Alexa 594-conjugated antibody (1:400) at 37°C for 1 h. Finally, the monolayer was again washed with PBS-T, and 100 μl of 0.5 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) was added for incubation at 37°C for 1 h. After successive washings with PBS-T, the reaction was fixed with 1% p-formaldehyde.

The potential fungal infection was observed using images processed by the IN Cell Analyser 2000 system (GE Healthcare). All of the nuclei were stained with DAPI, and the actin filaments were revealed with phalloidin-fluorescein isothiocyanate (FITC). Pb18 yeast cells and PbMLSr were detected with an Alexa 594-conjugated antibody. All experiments were repeated at least three times. The results were processed by means of fluorescence intensity by using the IN Cell Investigator software and statistically analyzed with Origin lab 7.5 software. The data were evaluated using one-way analysis of variance (ANOVA), followed by Tukey’s test. A P value of <0.05 was considered significant.
Molecular docking with acetyl-CoA. Molecular docking simulations between PbMLS and acetyl-CoA were performed to verify which amino acids are considered more important for the stability of acetyl-CoA. The results of this analysis were crucial for the identification of ligands capable of forming contacts corresponding to those expected with acetyl-CoA and decipher the mechanism of interaction with PbMLS.

Figure 2 shows the key residues that provided stability to acetyl-CoA. The conformation shown in this figure corresponds to that of a lower energy and a higher incidence from the total of 1,000 independent simulations. The energy in this state was -18.0 kcal/mol, and this value was found in 21% of the simulations (see Fig. 3). All of the conformational modes that achieved success rates of $>10\%$ had energies between -17.8 and -18.3 kcal/mol. Acetyl-CoA had a total of 20 torsions to fit the PbMLS binding pocket. The majority of the torsions were distributed along the main axis of the acetyl-CoA, and two of them were present between the rings and binding of a phosphate group.

It was possible to identify two distinct regions of acetyl-CoA interacting with PbMLS: (i) a purine ring and (ii) an open-chain moiety. The region of the rings was completely buried in the cavity, forming polar and nonpolar contacts. In contrast, in the open-chain region, there was a greater number of polar contacts, but this region forms nonpolar contacts with Ile443, Tyr430, and Ile441. Side-chain H-bonds were observed between phosphate groups of acetyl-CoA and Lys217, Lys287, and Lys288. The variation of its ASA was 540 Å².

Virtual screening. (i) Classification by affinity criteria. Virtual screening using the ZINC database was performed to search for compounds binding to PbMLS. In all simulations, the conformation of the compounds was limited to a region surrounding the main binding pockets of the protein. This region was defined according to the classification of DoGSiteScorer, considering only the larger volume cavity. All of these regions were then covered by the defined grid to limit the region of the conformational search. A total of 21 pockets were found, all of which had volumes covered by the considered grid. The binding pocket with the highest volume found by DoGSiteScorer was 4,492 Å³, whereas the other volumes were < 715 Å³. The main binding pocket of PbMLS had approximately 160 hydrophobic contacts, which represents approximately 31% of the relative number of hydrophobic site interaction centers (SIACs). In this pocket, we found 48% hydrophobic, 28% polar, 12% positive, and 12% negative contacts.

Figure S3 in the supplemental material shows the top 10 compounds selected based on the affinity criterion. The lowest energy values were -16.4 kcal/mol and -15.7 kcal/mol for compounds 8918338 (rank 2) and 12876659 (rank 1), which exhibited success rates of 91% and 98%, respectively (Fig. 3). The tenth-ranked compound was 8876676 (rank 10), which exhibited an energy value and success rate of -12.9 kcal/mol and 99%, respectively. In general, the success rate found for all of the compounds selected by the affinity criterion was $> 90\%$.

When the ligands were in the binding pocket of PbMLS, the highest variation of ASA was found for compound 8876937 (412 Å²) (rank 3). This same ligand was between two lower (by atom number)-ranked compounds based on the affinity criterion with only two torsions. Interestingly, ligand 8918302 (rank 6) had a success rate of 99% at finding the same energy, even if no torsion was available for its accommodation in the binding pocket.

Figure 4 shows how these ligands were accommodated in the
binding pocket and which PbMLS residues interacted more strongly with each ligand. Note that all of the ligands bound in the same pocket. Another important feature is the nature of the ligand contacts. The ligands had two well-defined regions, one with a high concentration of polar interactions (or H-bond contact), and another with a high concentration of nonpolar (van der Waals contact) interactions. This is a characteristic of amphipathic molecules that appears to be crucial for achieving stability in the pocket of PbMLS. Nonpolar contacts with a higher occurrence were found for the Asp121, Trp279, and Thr96 residues. Similarly, the polar contacts had higher incidence in Arg168, His371, and Glu448. Note that the contacts did not necessarily indicate the nature of the residue but rather the type of contact that each residue formed with the ligands. In general, contacts involving Glu448, Ser122, His371, Asp449, Met447, and Thr96 were common in the interaction with PbMLS, similarly to the interaction with acetyl-CoA. However, only the two best compounds selected based on the affinity criterion established contacts with the nonpolar residues Ile441 and Ile443 (Fig. 3 and 4).

(ii) Classification by efficiency criteria. Based on the efficiency criterion, the top 10 compounds were selected (Fig. 3; see also Fig. S4 in the supplemental material). The efficiency criterion selected ligands with low numbers of atoms and low affinity. These ligands were smaller in size than the other ranked ligands, with approximately half of the number of atoms. In general, it was verified that such compounds had contacts with several key residues of PbMLS that interacted with acetyl-CoA. However, because they were smaller, most of the residues were located inside the cavity and preferably stabilized by nonpolar contacts (Fig. 3 and 5).

This feature found in the compounds screened resulted in chemical groups with high spatial complementarity in the binding pocket of PbMLS; thus, the hydrogen bonds were not favored and observed in such compounds. As shown in Fig. 5, the top two compounds were accommodated in the binding pocket. Note that
the Trp279, Glu448, and Asp121 residues could form contacts with almost all of the compounds ranked based on the efficiency criteria (Fig. 3). Most of the compounds were in a favorable position to interact with Arg168 through PI.

Of the 10 compounds ranked by efficiency, seven had more than eight contacts similar to those found with acetyl-CoA, regardless of the nature of the contact (polar or nonpolar). Compound 12503788 (rank 6) showed greater correspondence with nine nonpolar contacts and two polar contacts. Conversely, compound 4293427 (rank 3) resulted in eight polar contacts similar to those found for acetyl-CoA and only one nonpolar contact (Fig. 3).

![FIG 3 Scores and key residues of the compounds obtained in binding pocket of PbMLS. Nonpolar contacts are represented in green, and polar contacts are represented in pink. CV, coefficient of variation between the number of nonpolar and polar residues in contact with acetyl-CoA; PI, π or σ interaction; HB, hydrogen bond with side chain; HS, hydrogen bond with backbone. Further information on the listed variables is indicated with superscript numbers, as follows: 1, number of atoms (except hydrogen atoms); 2, AutoDock Vina (ADVina) score obtained for mode-1 (lowest energy) used in the definition of the compound’s rank; 3, AutoDock Vina energy is the term \(c_{\text{inter}} \) in equation 1 obtained for mode-1; 4, success rate in obtaining the same score in a total of 1,000 independent simulations; 5, dASA is the variation of the accessible surface area (ASA) to take the ligand in the binding pocket of PbMLS; parentheses indicate the ASA to the solvent in the cavity of PbMLS.](image-url)
FIG 4 Molecular surface representation of PbMLS and LigPlot diagrams of four compounds selected based on the affinity criterion. The modes of interaction for compounds 12876659 (top left), 8876937 (top right), 8918302 (bottom left), and 8918338 (bottom right) are shown in green. π-interactions are represented by orange lines, green dashed arrows indicate hydrogen-bond interactions with amino acid main chains, and blue dashed arrows indicate side-chain hydrogen-bond interactions. The arrowhead directs toward the electron donor. The structures of the compounds correspond to the lowest scores and the highest hits for a total of 1,000 independent simulations performed using AutoDock Vina.
FIG 5 Molecular surface representation of PbMLS and LigPlot diagrams of the top two compounds selected by the efficiency criterion and of the top two alkaloids that interfered with PbMLSr activity and fungal growth. The modes of interaction of each of the following compound are shown: 2097571 (blue), 12658252 (white), alkaloid 8 (green), and alkaloid 3 (yellow). The LigPlots of compounds 2097571 (top left), 12658252 (top right), alkaloid 8 (bottom left), and alkaloid 3 (bottom right) are shown. π-interactions are represented by orange lines, green dashed arrows indicate hydrogen-bond interactions with amino acid main chains, and blue dashed arrows indicate side-chain hydrogen-bond interactions. The arrowhead directs toward the electron donor. The highlighted rings are common among the compounds. The structures of the compounds correspond to the lowest scores and highest hits from a total of 1,000 independent simulations using AutoDock Vina.
Molecular docking with alkaloids. Based on the top compounds ranked by affinity and efficiency parameters from virtual screening, we identified a topological pattern to understand the alkaloid indole moiety (highlighted in Fig. 5). Since these structural features and its angles were also present on a series of β-carboline alkaloids isolated by our research group from Rubiaceae and Apocynaceae species, they were introduced in this study (Fig. 6).

Molecular docking simulations were performed using AutoDock Vina for all alkaloids shown in Fig. 3, but only alkaloids 8 and 3 had known modes of interaction (Fig. 5). The affinities of these two alkaloids in the binding pocket are also shown in Fig. S5 and S6 in the supplemental material. The comparison of all of the alkaloids and acetyl-CoA is shown in Fig. 3. Alkaloids 8 and 3 had numbers of atoms similar to those found for acetyl-CoA. Note that alkaloids 8 and 3 had the lowest energies of interaction found for all of the alkaloids and, interestingly, had the same energy magnitude as the top-ranked compounds obtained by virtual screening. The top five highest-ranked compounds based on the affinity criterion had energies between −15.7 kcal/mol and −13.2 kcal/mol, whereas the energies of alkaloids 8 and 3 were −14.1 kcal/mol and −13.1 kcal/mol, respectively. The total number of atoms among these compounds was also very similar, i.e., approximately 40 atoms. With the exception of alkaloids 8 and 3, all of the other compounds had very similar energies. The success rates at achieving these energies were >70% for all of the alkaloids.

Even when the torsion effects were included in the AutoDock Vina scores, these two alkaloids had the lowest scores. The high number of torsions for alkaloid 8 (10 torsions) maintained its score (−8.9 kcal/mol) at a greater level than that of alkaloid 3 (−10.6 kcal/mol) but lower than that of all of the other alkaloids. All of them were located in the same region of the binding pocket of PbMLS, making contacts with the Asp280 and Arg278 residues (Fig. 3).

The chemical groups of the amino acids involved in the interactions discussed above can be observed in Fig. S5 and S6 in the supplemental material.

The contacts involved in the interaction between acetyl-CoA and PbMLS were also verified for each alkaloid. Note that alkaloid 8 had the highest incidence of contacts among all of the alkaloids and compounds ranked. None of the compounds ranked by the efficiency and affinity criteria resulted in an incidence of contacts close to those observed for acetyl-CoA. Alkaloids 3 and 2 had 13
Inhibitory effect of alkaloid compounds on *Paracoccidioides* species growth. This study verified that the alkaloid compounds that inhibited PbMLS can interfere with the growth of *Pb18* yeast cells. The microplate microdilution assay using alamarBlue was performed to measure the viability of *Pb18* yeast cells (34). Itraconazole and amphotericin B were used as positive controls. The results showed that alkaloids 4 and 8, which had lower MICs and IC₅₀s, were more effective at inhibiting fungal growth (Table 1).

Inhibition of the adhesion of PbMLSr to ECM. Because PbMLS is an anchorless adhesin and binds to fibronectin and type I and IV collagen, we investigated whether alkaloids 4, 8, 6, and 3 could prevent the adhesion of PbMLSr to these ECM components through a far-Western blot assay. Alkaloids 4, 8, 6, and 3 inhibited the adhesion of PbMLSr to fibronectin and type I and IV collagen (Fig. 7A, B, and C, respectively). A positive reaction was visualized to ECM bound to PbMLSr immobilized in the membrane (Fig. 7A to C, line 5). The results showed that the alkaloid compounds inhibited PbMLSr adhesion to these ECM components.

To validate the data described above, we investigated whether this process could also occur through an ELISA (Table 2). Thus, the ECM components were immobilized in the plate, and the alkaloid compounds and PbMLSr were then added. Negative controls were performed using PbMLS or ECM only. Positive controls were performed using anti-PbMLS, anti-fibronectin, anti-type I collagen, or anti-type IV collagen antibody (data not shown). It was observed that alkaloids 3, 6, 4, and 8 inhibited the adhesion of PbMLSr and *Pb18* to fibronectin and type I and IV collagen.

The analysis of all ECM components revealed that the contacts similar to those found for acetyl-CoA, but only alkaloid 3 had an energy score close to that of alkaloid 8. Large amounts of H-bonds and PI were found for alkaloids 3 and 8. Alkaloid 8 had PI with Arg168, Arg278, and Lys288, and these were also found in the interaction with acetyl-CoA. Alkaloid 3 had three H-bond contacts with Ser122, Met447, and Thr96 and the other compounds. Alkaloid 6 had 11 contacts in common with the other compounds. Alkaloid 8 had PI with Arg168, Arg278, and Lys288, and these were also found in the interaction with acetyl-CoA. Alkaloid 2 had an energy score close to that of alkaloid 8.

Table 1 Inhibitory effect of alkaloid compounds on Pb18 growth and PbMLS activity

<table>
<thead>
<tr>
<th>Compound/antifungal</th>
<th>Pb18 IC₅₀ (μg/ml)ᵃ</th>
<th>Pb18 MIC (μg/ml)ᵇ</th>
<th>PbMLS IC₅₀ (μg/ml)ᵇ</th>
<th>Specific activity (U/μl)ᶜ</th>
<th>PbMLS IC₅₀ (μg/ml)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>46.21</td>
<td>62.02</td>
<td>17 ± 0.1</td>
<td>46.2 ± 0.1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>160.36</td>
<td>249.50</td>
<td>29 ± 0.0</td>
<td>80.3 ± 0.1</td>
<td>29 ± 0.0</td>
</tr>
<tr>
<td>6</td>
<td>135.87</td>
<td>249.57</td>
<td>21 ± 0.0</td>
<td>102.4 ± 0.1</td>
<td>102.4 ± 0.1</td>
</tr>
<tr>
<td>4</td>
<td>4.04</td>
<td>8.76</td>
<td>17 ± 0.0</td>
<td>97.3 ± 0.3</td>
<td>97.3 ± 0.3</td>
</tr>
<tr>
<td>9</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>515.5 ± 0.1</td>
<td>NF</td>
</tr>
<tr>
<td>1</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>512.0 ± 0.3</td>
<td>NF</td>
</tr>
<tr>
<td>2</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>501.0 ± 0.3</td>
<td>NF</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>518.3 ± 0.2</td>
<td>NF</td>
</tr>
<tr>
<td>7</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>488.4 ± 0.4</td>
<td>NF</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>0.01</td>
<td>0.015</td>
<td>NF</td>
<td>515.5 ± 0.1</td>
<td>NF</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>0.06</td>
<td>0.12</td>
<td>NF</td>
<td>512.0 ± 0.3</td>
<td>NF</td>
</tr>
<tr>
<td>Pyruvic acid</td>
<td>4.8 ± 0.0</td>
<td>104.5 ± 0.4</td>
<td>NF</td>
<td>515.5 ± 0.1</td>
<td>NF</td>
</tr>
<tr>
<td>Control</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>521.7 ± 0.2</td>
<td>NF</td>
</tr>
</tbody>
</table>

ᵃ Pb18 IC₅₀, concentration that inhibits 50% of cell growth, visualized by a decrease of 50% in absorbance compared to that of the control cell.

ᵇ PbMLS IC₅₀, concentration that inhibits 50% of enzyme activity, visualized by a decrease of 50% in absorbance compared to that of the control.

ᶜ One molecule of coenzyme A formed per minute.

ᵈ NF, not found.

 الأسبوع

Inhibitory effect of alkaloid compounds on PbMLSr activity.

The inhibition of PbMLSr by alkaloid compounds was investigated. Concentrations of the alkaloid compounds ranging from 6 to 36 μg/ml were tested (data not shown) to find the concentration that inhibited PbMLS activity. Of the nine compounds tested, four inhibited PbMLSr. Compounds 3, 4, 6, and 8 inhibited PbMLSr more effectively than the known inhibitor pyruvic acid. The inhibition with compound 8 was higher than that with compounds 3, 4, and 6 (Table 1).

![Image](http://aac.asm.org/)

FIG 7 Binding of PbMLSr to extracellular matrix components. PbMLSr was subjected to SDS-PAGE and electroblotted. The negative control was obtained by incubating the PbMLSr with peroxidase-conjugated anti-rabbit IgG (data not shown). The membranes were reacted with fibronectin and type I and IV collagen (A, B, and C, respectively), incubated with alkaloids 4 (lane 1), 8 (lane 2), 6 (lane 3), and 3 (lane 4), and subsequently incubated with rabbit IgG anti-laminin, anti-fibronectin, and mouse anti-type I and anti-type IV collagen antibodies, respectively. The positive control was obtained by incubating the recombinant protein with anti-PbMLS polyclonal antibody (A, B, and C, lane 5). Peroxidase-conjugated anti-rabbit and anti-mouse IgG were used to reveal the reactions.
inhibition of the adhesion of PbMLSr by alkaloids 8 and 3 was higher than that obtained with Pb18. In contrast, the inhibition of the adhesion to Pb18 by alkaloid 4 was higher than that obtained with PbMLSr. The analysis of fibronectin and type I collagen showed that the inhibition of the adhesion to PbMLSr by alkaloid 6 was higher than that found with Pb18. The analysis of type IV collagen showed that the adhesion to Pb18 was higher than that to PbMLSr.

Considering PbMLSr, a higher inhibition was observed when fibronectin (to alkaloid 3 only) or type I collagen was used. Low inhibition by all alkaloids was observed with type IV collagen. Considering the fungus, higher inhibitions were observed in the adhesion to type I and IV collagen.

Fluorescence microscopy by IN Cell. The adhesion of PbMLSr and Pb18 to A549 and MRC5 cells in the presence of alkaloid compounds was evaluated using IN Cell Analyzer 2000 system light microscopy (Fig. 8). The adhesion was investigated using the antibodies corresponding to ECM fibronectin, type I collagen, or type IV collagen. The markers phalloidin-FITC (green), DAPI (blue), and anti-Paracoccidioides polyvalent serum plus Alexa 594-conjugated antibody (red to yellow) were used to visualize actin filaments, nuclei, Pb18 yeast cells and PbMLSr, respectively. The fluorescence staining of PbMLSr and Pb18 adhered to cells, and the adhesion inhibition by the alkaloids to ECM was measured. A more intense red indicates a greater adhesion of PbMLSr and Pb18 to the cells. The fluorescence staining intensity is shown as

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fibronectin</th>
<th>Type I collagen</th>
<th>Type IV collagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>19.60/30.0</td>
<td>27.59/33.98</td>
<td>21.38/34.63</td>
</tr>
<tr>
<td>8</td>
<td>25.93/5.05</td>
<td>33.03/12.59</td>
<td>21.62/14.36</td>
</tr>
<tr>
<td>6</td>
<td>18.88/5.27</td>
<td>37.17/31.45</td>
<td>19.47/34.31</td>
</tr>
<tr>
<td>3</td>
<td>41.10/8.51</td>
<td>31.52/9.18</td>
<td>17.79/12.64</td>
</tr>
</tbody>
</table>

TABLE 2 Percent inhibition of the adherence of PbMLSr and Pb18 to ECM by alkaloid compounds

FIG 8 Inhibition of the adhesion of PbMLSr and Pb18 to A549 and MRC5 cells. The inhibition of the adhesion of PbMLSr to A549 (A) and MRC5 (B) cells and of Pb18 to A549 (C) and MRC5 (D) cells by the alkaloid compounds was evaluated after 2 h of incubation. Green, phalloidin-FITC; blue, DAPI; red to yellow, anti-Paracoccidioides sp. polyclonal serum plus Alexa 594-conjugated antibody. The fluorescence staining intensity is shown in the graphs. The assays were conducted using an IN Cell Analyzer 2000 using light microscopy.
in Fig. 8. The results showed that all four compounds inhibited the adhesion of PbMLSr to A549 (Fig. 8A) and MRC5 (Fig. 8B) cells. The four compounds also inhibited the adhesion of Pb18 to A549 (Fig. 8C) and MRC5 (Fig. 8D) cells. The inhibition of adhesion was higher to fibronectin and type IV collagen than to type I collagen, considering PbMLSr, Pb18, or type of cells (Fig. 8). In contrast, the ELISA results showed that the inhibition of adhesion was higher to type I collagen (Table 2). The small differences between the results may be due to differences in the principles of the techniques.

Cell cytotoxicity assay. The cytotoxic effect of alkaloids 4, 8, 6, and 3 was investigated in A549 and MRC5 cells through an MTT assay. The results showed that the alkaloid compounds were generally not cytotoxic to MRC5 and A549 cells at the concentrations used to inhibit PbMLSr activity and Pb18 growth or in the adhesion experiments (Table 3). Only alkaloid 6 was cytotoxic to A549 cells, as determined based on the MIC to Pb18 growth (Table 1). The selective toxicity index to each compound was calculated. The higher index values were found to compounds 4 and 8 (Table 3).

DISCUSSION

There were two distinct regions of acetyl-CoA that interacted differently with PbMLS. One of the regions, the purine ring, was completely buried in PbMLS. Only one torsion was found between the purine ring and the adjacent cycle, conferring specificity to this region and thus favoring binding to the internal region of the binding pocket by complementarity (see Fig. 2). The other region, the open-chain moiety, is projected out of the PbMLS cavity. This region interacts with nine critical amino acid residues of PbMLS by forming nonpolar contacts (see Fig. 3). It has several degrees of freedom, approximately 18 torsions, which provide flexibility to accommodate its poor nonpolar content through contacts that minimize the area exposed to the solvent. In this case, nonpolar contacts with Ile443 and Ile441 were favored at the entrance of the cavity. This region of acetyl-CoA was not critical for providing specificity to PbMLS, because its polar content may be available than those prevented kinetically by frustrated states (polar contacts).

In the particular case of alkaloid 3, which had a low CV of −0.9, we believe that the unbalance between the contributions of nonpolar and polar contacts may have been offset by H-bonds and PI with the amino acid residues of PbMLS. This ensured 13 contacts similar to those observed with acetyl-CoA but an unbalance in relation to the nature of the contacts. In any case, its inhibitory

| Table 3: Cytotoxic effect of alkaloid compounds |
|-----------------|------------------|------------------|------------------|------------------|
| Compound | IC₅₀ ± SD (µg/ml) | Selective toxicity index | A549 | MRC5 | A549 | MRC5 |
| 4 | 225 ± 0.3 | 273 ± 0.4 | 55.7 | 67.6 |
| 8 | 170 ± 0.4 | 249 ± 0.6 | 3.7 | 5.4 |
| 6 | 49 ± 0.5 | 268 ± 0.7 | 0.4 | 2.0 |
| 3 | 202 ± 0.4 | 235 ± 0.3 | 1.3 | 1.5 |

CV: Coefficient of Variation
power was approximately 2-fold lower than that observed for alkaloid 8.

Finally, the comparison of alkaloids 5 and 4 revealed that the first compound was unable to inhibit PbMLs and fungal growth. Our interpretation of this marked difference is not easily understood by the parameters shown in Fig. 3. We understand that there is a very fine energy threshold involving the stability of alkaloids 5 and 4 in the binding pocket of PbMLs. The structural difference between these two compounds was only one methoxyl group in favor of alkaloid 5. Both compounds were able to establish contact with the nonpolar residues, such as Val455 and Phe521, which were located within the binding pocket of PbMLs. This is a region that is favorable for the formation of nonpolar contacts, which were critical for the stability of these alkaloids.

In addition, polar contacts with Glu120, Arg168, and Lys217 also occurred in both alkaloids. All of these contacts were also present in the interaction between PbMLs and acetyl-CoA. Note that these two alkaloids (4 and 5) are smaller than acetyl-CoA and the other highest-scoring alkaloids studied here. Therefore, the difference between these two alkaloids and acetyl-CoA seems to be related to the number of contacts and the nature of the contacts, which might be critical. Thus, if we consider the total number of contacts found for the two alkaloids, which were common to those found for acetyl-CoA, alkaloid 5 had 36% (4/11) of its contacts frustrated in relation to acetyl-CoA; those contacts that should be polar were formed by nonpolar contacts, and vice versa. The analysis of alkaloid 4 showed that only 14% (1/7) of the contacts differed. This is a crude attempt to understand the differences between these two compounds. However, all of these hypotheses should be checked to estimate the ligand dissociation path to calculate the smooth reaction path that links the bound and unbound states. In our next study, these estimates should be determined using umbrella sampling to calculate the mean force of each alkaloid.

The selective toxicity index of \(\geq 5 \) or 10-fold, more selective for A549 and MRC5 cell lines than for the fungus, is typically expected for new antimicrobials. The higher indexes were found to compounds 4 and 8, mainly considering MRC5, which are healthy cells. This find indicates the good features of these compounds. The inhibitory effect of alkaloids on Paracoccidioides species growth was performed with only one strain, since the compounds have been extracted from plants in small amounts. More assays with other strains should be done; however, the phytochemical methodology for isolation of the alkaloids must be repeated. This procedure comprises plant collection in the flowering season, December to February, chromatographic separation and purification, and spectroscopic analysis of the compounds (26–28).

Our group has shown that the exposure of Paracoccidioides spp. to the natural product oenothine B results in changes in the transcriptional profile, level of cell wall polymers, and yeast cell morphology (38, 39). We also searched for inhibitors to the iso-citrate lyase from the glyoxylate cycle of Paracoccidioides species (PhICL). This study reports on the inhibitory action of argenticatone and its derivatives on Paracoccidioides lutzii Pb01 yeast cells during the differentiation from mycelium to yeast and on recombinant and native PhICL enzymes in the presence of different carbon sources. In silico analyses were also performed to corroborate the in vivo studies (20).

Our results demonstrated that the alkaloid compounds studied inhibited an important enzyme from Paracoccidioides spp., namely, the PbMLs. In addition, they inhibited the adhesion of Pb18 and PbMLs to the ECM using different cell types and methodologies. Additionally, these alkaloids were not cytotoxic at the concentrations used in the experiments mentioned above. The MICs of compounds 3, 6, and even 8 are remarkably high. On the other hand, compound 4 has moderate activity. Taking both MIC and mammalian toxicity data into consideration, compound 4 is a good candidate for antifungal development. Although in their current form, this class of compounds has modest potency compared with that of amphotericin B or itraconazole, they may offer a basis for the development of alternatives to traditional antifungal agents. Compounds with modest potency have been considered for study (40).

ACKNOWLEDGMENTS

This work, performed at Universidade Federal de Goiás, was supported by the Ministério da Ciência e Tecnologia/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTI/CNPq), Fundação Nacional de Desenvolvimento Científico e Tecnológico (FNDC), Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Instituto Nacional de Ciência e Tecnologia para Inovação Farmacêutica (INCT-IF). Additionally, B.R.D.S.N., R.L.G., and J.D.F.D.S. were supported by fellowships from CNPq, and C.D.S.F. was supported by CAPES.

REFERENCES

