Association of Novel Nonsynonymous Single Nucleotide Polymorphisms in \(\text{ampD} \) with Cephalosporin Resistance and Phylogenetic Variations in \(\text{ampC} \), \(\text{ampR} \), \(\text{ompF} \), and \(\text{ompC} \) in *Enterobacter cloacae* Isolates That Are Highly Resistant to Carbapenems

Baharak Babouee Flury,⁎ Matthew J. Ellington,⁎ Katie L. Hopkins,⁎ Jane F. Turton,⁎ Michel Doumith,⁎ Richard Loy,⁎ Peter Staves,⁎ Vladimirina Hinic,⁎ Reno Frei,⁎ Neil Woodford⁎

Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, London, United Kingdom; Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland

In *Enterobacter cloacae*, the genetic lesions associated with derepression of the AmpC β-lactamase include diverse single nucleotide polymorphisms (SNPs) and/or indels in the ampD and ampR genes and SNPs in ampC, while diverse SNPs in the promoter region or SNPs/indels within the coding sequence of outer membrane proteins have been described to alter porin production leading to carbapenem resistance. We sought to define the underlying mechanisms conferring cephalosporin and carbapenem resistance in a collection of *E. cloacae* isolates with unusually high carbapenem resistance and no known carbapenemase and, in contrast to many previous studies, considered the SNPs we detected in relation to the multilocus sequence type (MLST)-based phylogeny of our collection. Whole-genome sequencing was applied on the most resistant isolates to seek novel carbapenemases, in contrast to many previous studies, considered the SNPs we detected in relation to the multilocus sequence type (MLST)-based phylogeny of our collection. Additionally, the relationship between levels of AmpC transcription, production of the porins, and carbapenem MICs was investigated.

MATERIALS AND METHODS

Bacterial isolates and antimicrobial susceptibility testing. Thirty-three *E. cloacae* isolates were included, consisting of 25 ertapenem-resistant clinical isolates (MICs, ≥2 mg/liter) from 25 patients. Sixteen of these were submitted from 15 United Kingdom laboratories to Public Health

Enterobacter spp. can cause a wide variety of nosocomial infections, including invasive and device-associated diseases (1). Strains resistant to multiple classes of antimicrobials have caused numerous outbreaks in hospitals and intensive care units worldwide (2, 3). The recent emergence of resistance to carbapenems threatens our last good therapeutic option for many infections, including those caused by *Enterobacter* spp., and constitutes a global public health concern (4).

Although carbapenem resistance due to the production of acquired carbapenemase genes is increasingly reported among members of *Enterobacteriaceae*, these mechanisms are still less commonly observed in *Enterobacter* spp. than in *Klebsiella* spp. or *Escherichia coli* (5, 6). An alternative carbapenem resistance strategy for these species is variously to combine extended-spectrum β-lactamases (ESBLs), increased efflux, porin alteration, and a strongly expressed (derepressed) endogenous AmpC enzyme (7–9). The genetic lesions associated with the derepression of the AmpC β-lactamase have been described to occur as diverse single nucleotide polymorphisms (SNPs) and/or indels in the N-acetylmuramyl-l-alanine amidase and in transcriptional regulator gene ampD and ampR, respectively (10–13), while outer membrane protein (porin) production is altered by diverse SNPs in the promoter region or by SNPs/indels within the coding sequence (8).

In *Enterobacter cloacae*, a wide range of carbapenem MICs have been attributed to these alternative, noncarbapenemase-mediated mechanisms, but hitherto-detected SNPs have not been related to the isolates’ phylogeny. Furthermore, the exact interplay and contributions of AmpC and porin loss to high-level carbapenem resistance remain unclear. To understand these mechanisms better, we investigated the presence of novel carbapenemases among a collection of carbapenem-resistant *E. cloacae* isolates from the United Kingdom and Switzerland, detected lesions in *ampC*, *ampR*, *ampD*, *ompF*, and *ompC* and their respective promoter regions among the United Kingdom isolates, and considered SNPs that we detected in relation to the multilocus sequence type (MLST)-based phylogeny of our collection. Additionally, the relationship between levels of AmpC transcription, production of the porins, and carbapenem MICs was investigated.

England’s Antimicrobial Resistance and Healthcare Associated Infections (AMRHA1) Reference Unit between October 2012 and October 2013, and nine were from different patients in Basel, Switzerland (CH isolates 4 to 8, 10, 14, 15, 17, 18). Of the remaining eight isolates, seven (S isolates S1, S8 to S12, and wild-type strain E. cloacae NCTC 13405) that were susceptible to carbapenems and most cephalosporins (except ceftoxitin) were used as comparators for outer membrane protein (OMP) extraction experiments and PCR controls, whereas NCTC 13406, the AmpC-depressed mutant of NCTC 13405, was used as a control for AmpC activity.

MIGs were determined by British Society for Antimicrobial Chemotherapy (BSAC) agil dilution methodology (14) or by Etest and were interpreted according to BSAC (15) and EUCAST guidelines. All isolates were tested for cefotaxime/cloxacillin synergy to confirm the role of AmpC in their resistance phenotype.

Strain typing. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested genomic DNA was performed on all isolates using the following conditions: 6 V cm⁻¹, 12°C, 1.2% (wt/vol) agarose, and 30 h with ramping times of 5 to 35 s. Restriction patterns were analyzed, and a dendrogram was generated using BioNumerics v. 6.1 software (Applied Maths, Kortrijk, Belgium), as described previously (16), using a 1.3% tolerance in band position. MLST was undertaken as described by Miyoshi-Akiyama et al. (17), and sequence types (STs) were assigned using the PubMLST website (http://pubmlst.org/erijkb/gisdb/gisdb.pl?db = pubmlst _eclacase_seqdef&page=sequenceQuery).

Detection of β-lactamases by PCR. PCR from boiled lysates was used to detect genes encoding TEM, SHV, and CTX-M β-lactamases and plasmidic ampC genes of the ACC, CIT, DHA, ENT/EBC, FOX, and MOX groups (18–21). A carbapenemase screening test (Rapid CARB; Rosco Diagnostica, Taastrup, Denmark) was performed on isolates with meropenem MICs of >0.125 mg/liter. The genes bla_{ompC}, bla_{NDM}, bla_{VIM}, bla_{IMP}, and bla_{GES} were also sought via PCR.

Detection of sequence alterations. The United Kingdom isolates plus the susceptible controls (NCTC strains and S strains) were subject to DNA sequencing of the ampC and ampR coding and intergenic regions as well as the ampD, ompC, and ompF open reading frames and their promoter regions using the primers listed in Table S1 in the supplemental material. DNA sequences of the amplicons were determined as described previously (8, 27).

RESULTS

The 33 E. cloacae isolates represented 21 known and three novel STs (ST415, ST416, and ST434) and were genetically diverse by PFGE (Fig. 1).

Comparison with our reference sequence of NCTC 13405 and our wild-type strain NCTC 13405, multiple sequence variants of the ampC, ampR, ompF, and ampC genes were detected in the 24 isolates tested (which consisted of eight carbapenem-susceptible comparators and the 16 carbapenem-resistant isolates from the United Kingdom), but most SNP correlations with the STs of the isolates rather than with carbapenem resistance (see Fig. S1 in the supplemental material) and, when concatenated, revealed a tree with a topology similar to that derived from concatenated sequences of the seven MLST targets (see Fig. S2 in the supplemental material).

(i) **ampC**. Compared with our reference sequence of NCTC 13405 and compared with E. cloacae P99 \((X07274.1)\), 6 to 11 SNPs and 3 to 21 SNPs, respectively, leading to amino acid changes were
identified in ampC sequences from the 24 isolates tested. Nevertheless, none were located in the SISK serine active site, in the YAN, KTG, and DAQA conserved motifs (30), or the β-lactam binding sites (Gln120, Ser289, Ser343, Asn346, Arg349), but all were detected in cephalosporin- and carbapenem-susceptible isolates alike. Thr14Leu, Lys41Ile, Pro68Ser, Trp221Arg, and Ile154Val were exclusive to two carbapenem-resistant isolates, but both belonged to the same ST (ST200).

(ii) ampR. The only amino acid changes that were exclusive to carbapenem-resistant strains and not related to the isolates’ STs were Val54Ile and Glu273Lys, each of which was observed in only 2/16 resistant isolates (isolates 6 and 46 and isolates 11 and 21, respectively).

(iii) ampD. Amino acid changes in AmpD were detected across the phylogenetic tree. Among the mutations identified across the sequences of ampD in all 24 isolates (including control isolates), 14 substitutions (Ala9Thr, His18Pro, Pro40Leu, Trp42Arg, Ile48Ser, Arg78Ser, Val84Leu, Gln86Leu, Tyr87Ser, Met101Lys, ...

TABLE 1 Carbapenem distribution among E. cloacae isolates with ertapenem MICs of ≥2 mg/liter

<table>
<thead>
<tr>
<th>Carbapenem</th>
<th>No. of isolates according to MIC (mg/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤0.25</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>6</td>
</tr>
<tr>
<td>Imipenem</td>
<td>2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>2</td>
</tr>
</tbody>
</table>

There are a total of 25 isolates.
Gly114Ala, Tyr130Asp, Leu133Gln, and Asp149Gly) were uniquely identified in the cephalosporin-resistant isolates, while isolate 2 had AmpD truncated by mutation leading to a premature stop codon at position 84. All of these amino acid substitutions were also found when our isolates were compared with wild-type ampD ZI14003. Of these amino acid changes, only alterations at positions 40, 48, 86, 87, and 114 were considered significant in terms of being detected in isolates belonging to STs where the susceptible control isolates of the same ST did not harbor the same mutation. Met101Lys was identified more than once in two different STs, but we did not have susceptible control isolates of these STs with which to compare them. All other amino acid changes were detected in isolates belonging to different STs.

(iv) ompF and ompC. Sequence variation was observed in the OMP genes ompF and ompC compared with NCTC 13405. Amino acid changes in the long “extracellular” loops (L1 to L5) of OmpF were found in carbapenem-susceptible and in carbapenem-resistant isolates alike, indicating that the changes were not associated with carbapenem resistance. Detection of these hypervariable domains in the cell-surface-exposed loops is in line with previously published data (31). Likewise, there was no association with carbapenem resistance in the small numbers of changes in the transmembrane domains, of which β1 to β13 and β15 and β16 were highly conserved (see Fig. S1 in the supplemental material). A premature stop codon was seen in two carbapenem-resistant isolates (2 and 21, Leu242X and Val301X, respectively), and in the carbapenem-resistant isolate 11, the first 111 bp were deleted. In OmpC, loop 3, which folds into the porin channel, was wild type in all isolates, while amino acid changes occurred in loops L4 to L8. An Arg191Cys change in isolate 46 was the only amino acid change that was not observed in any of the carbapenem-susceptible isolates (see Fig. S1). Gene disruptions due to indels were observed in six isolates; in isolates 39 and 2, the beginning of the gene and the promoter region were disrupted by IS3 and IS1, respectively. In two isolates (11 and 14), the beginning of the gene was deleted from 7 up to 54 nucleotides and was replaced by a transposon; in isolate 6, the beginning of the gene (485 nucleotides) was deleted and was fused to the adjacent two-component system. The ompC gene of isolate 33 was not amplifiable, and we were only able to extract the end of the gene with whole-genome sequencing (first 1,218 nucleotides missing). A summary of the above-mentioned mutations in the genes sequenced, which were associated most strongly with a cephalosporin- and/or carbapenem-resistant phenotype, is listed in Table 3.

Gene expression. (i) ampC expression in correlation to ampR and ampD sequences. The ampC expression levels were measured in the wild-type, AmpC-inducible strain NCTC 13405 and its AmpC hyper-producing mutant NCTC 13406 as well as in three clinical isolates that were resistant to all carbapenems (isolate 2 belonging to ST50, isolate 45 belonging to ST133, and isolate 6). Two clinical carbapenem-susceptible isolates (S12 belonging to ST50 and S11 belonging to ST133) were chosen as comparators for resistant isolates 2 and 45. The ampR and ampD sequences of all isolates were related to the ampC expression level in order to find contributing SNPs that might lead to changes in ampC expression. A single amino acid substitution (Gln86Leu) in ampD distinguished NCTC 13405 from NCTC 13406. There were no differ-

Isolate no.	MIC (mg/liter) of antibiotic tested	AmpD amino acid	AmpF	OmpF	OmpC	Nucleotide
2	16	Val84X	Leu242X	Δ1–111	IS1 (−15)³	Δ0–485³
6	>256					Δ1–7
11	16	Pro40Leu				Δ1–54
13	4					Δ1–54
14	16					Δ1–54
21	32					Δ1–54
24	4					Δ1–54
25	64					Δ1–54
33	8					Δ1–1218
39	>256					Δ1–54
45	32					Δ1–54
47	>256					Δ1–54
NCTC 13406	4					Δ1–54

³ CLX, cloxacillin; CTX, cefotaxime; FEP, cephalosporin; ETP, etramipen; IPM, imipenem; MEM, meropenem.
⁴ Δ = Position of insertions downstream of the A of the start codon.
⁵ Nucleotide 485 is fused to the adjacent two-component system.
⁶ NCTC13406, AmpC β-lactamase derepressed (constitutive hyper-producing) mutant of NCTC 13405.
ences found between these isolates in any other genes sequenced, and an approximate 40-fold difference in \textit{ampC} transcription was observed between this pair.

The susceptible and resistant ST50 isolates 2 and S12 had identical \textit{ampC} and \textit{ampR} sequences but differed in AmpD due to an early stop codon (Val84X) in isolate 2. The carbapenem-susceptible and carbapenem-resistant ST133 isolates (S11 and 45) also differed only in AmpD (Ile48Ser in isolate 45), and the AmpD sequence of isolate 6 had a Leu133Gln change (Table 4 and Fig. 2; see also Fig. S1 in the supplemental material).

Isolates 2 and 45 had approximately 27- and 10-fold higher levels of \textit{ampC} transcription than isolates S12 and S11, respectively. Comparison of \textit{ampC} transcription for the three carbapenem-resistant isolates with the AmpC-inducible NCTC 13405 indicated that transcription levels in these isolates varied up to 29-fold.

(ii) Porin expression and DNA sequences of \textit{ompC} and \textit{ompF}.

OMP analysis of the same five isolates in which we studied \textit{ampC} transcription showed that the susceptible isolates S11, S12, and NCTC 13406 produced more OMP bands than the resistant isolates 2 and 6 (see Fig. S3 in the supplemental material), which had disruption lesions in the sequences of \textit{ompF} and/or \textit{ompC} (Table 4; see also Fig. S1 in the supplemental material). Porin gene sequences for isolate 45 were identical to those from carbapenem-susceptible isolate S11. In concordance with the sequence information, all isolates retained the

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
Isolate no. & ST & CLAX & CTX & FEP & ETP & IPM & MEM & \textit{ampC} & \textit{ampD} & \textit{ompF} \\
\hline
2 & 50 & 16 & >256 & 64 & >16 & 16 & 16 & 203,214dup & Val84X & 695delA \\
6 & 106 & 8 & >256 & 64 & >16 & 32 & 32 & T399A & Leu133Gln & \Delta0–485 \\
45 & 133 & 32 & 256 & 32 & >16 & 2 & 4 & T143G & Ile48Ser & 19X = 3X \\
NCTC 13405 & 108 & <0.125 & <0.25 & <0.25 & 0.25 & 1 & 1 & A256T & Gln86Leu & 40X \\
NCTC 13406 & 108 & 4 & 256 & 2 & 1 & 0.5 & 0.125 & & & \\
\hline
\end{tabular}
\caption{Lesions associated with AmpC derepression and cephalosporin and carbapenem resistance in the isolates tested in detail, and \textit{ampC} gene transcription compared to NCTC 13405 and \textit{ompF-ompC} transcription compared to NCTC 13406}
\end{table}
expression of OmpA. Transcript levels for ompF were up to 2.5-fold lower in clinical isolates 2 and 6 compared with those of NCTC 13406 and were nearly equivalent in isolate 45 compared with those of NCTC 13406. Transcription of ompC was noticeably lower in isolate 2, with levels 160-fold lower than those of NCTC 13406 and 3-fold lower in isolate 45. Measurement of ompC transcription in isolate 6 was not possible, as the primers used would not bind and extend due to a 485-bp deletion in the beginning of the gene.

DISCUSSION

Among a collection of E. cloacae clinical isolates with unusually high carbapenem MICs but no known carbapenemases, we found considerable genetic diversity indicated by PFGE, which was greater than that indicated by MLST, contrasting with previous findings (32). This is likely due to the higher discriminatory power of PFGE (33).

We sought to define the underlying mechanisms conferring cephalosporin and carbapenem resistance in this collection through a sequencing approach and, in contrast to many previous studies, considered the SNPs that we detected in relation to the MLST-based phylogeny of our collection to ascertain which were associated most strongly with a carbapenem-resistant phenotype and whether these related simply to the phylogeny of the isolates.

Previous data for low-level resistance and decreased susceptibility to carbapenems (meropenem and imipenem median MICs of 2 mg/liter and 4 mg/liter, respectively) (8, 9) have indicated that high carbapenem MICs but no known carbapenemases, we found greater resistance were associated most closely with porin loss occurring across carbapenem-susceptible and carbapenem-resistant isolates; NCTC 13405 and its mutant only differed in AmpD (Gln86Leu) where the mutant strain had a 40-fold increase in AmpC activity. Other amino acid substitutions that can be clearly correlated with cephalosporin and/or carbapenem resistance were Pro40Leu, Tyr87Ser, Val84X, and Gly114Ala. However, other substitutions in AmpD (Ala60Val and Phe63Tyr) were observed in carbapenem- and ceftazidime-susceptible strains; this contradicts previous reports of their involvement in ampC overexpression (12).

In AmpR, we found Glu273Lys, which was only detected in two highly cephalosporin-resistant strains. The observation of Val54Ile, described in highly cephalosporin-resistant isolates, where the role of these amino acid changes in AmpR for phenotypic resistance is unclear, however, as the activity of AmpR is dependent on the interaction with coregulators rather than on the expression of ampC (34).

In conclusion, this work has, for the first time, related SNPs observed in carbapenem-resistant and carbapenem-susceptible clinical isolates of E. cloacae to their MLST-based phylogeny and revealed hitherto unknown mutations in AmpD, which are responsible for cephalosporin and/or carbapenem resistance. SNPs detected in ampD were associated with constitutive AmpC overexpression, whereas most genetic differences in the other genes were phylogenetic variations and did not support any association with cephalosporin and/or carbapenem resistance. Although amino acid changes in AmpD correlated with AmpC overexpression and cephalosporin resistance, high levels of carbapenem resistance were associated most closely with porin loss occurring mainly due to insertion sequences and deletions disrupting their coding sequences and/or promoter regions. These data are observational and, along with explorations of the role of efflux, require further empirical molecular genetic proof via, e.g., complementation experiments, but nevertheless do indicate the ongoing importance of mutational carbapenem resistance in this species.

ACKNOWLEDGMENTS

We acknowledge Laurent Poirel and Patrice Nordmann for sharing the prepublication sequences of bla_{TEM}. We also thank Jayesh Shah, Claire Perry, Marina Warner, Ayisha Chaudry, Rachael Adkin, Jacqueline Findlay, Tabassum Noorie, Rachel Pike, and Shazad Mushtaq for technical advice and assistance.

This study was supported by an award to B.B.F. from the Margarete Babouee Flury et al.
REFERENCES

