First Description of IncX3 Plasmids Carrying \(\text{bla}_{\text{OXA-181}} \) in Escherichia coli Clinical Isolates in Burkina Faso

Abdoul-Salam Ouédraogo\(,\text{ }^{a,b,c} \) Fabrice Compain\(,\text{ }^{b} \) Mahamoudou Sanou\(,\text{ }^{j} \) Salim Aberkane\(,\text{ }^{a,b,c} \) Nicolas Bouzinbi\(,\text{ }^{a,b,c} \) Mallorie Hide\(,\text{ }^{l} \) Lassana Sangaré\(,\text{ }^{l} \) Rasmata Ouédraogo-Traoré\(,\text{ }^{l} \) Hélène Jean-Pierre\(,\text{ }^{a,b,g} \) Julie Vendrell\(,\text{ }^{b,j,k} \) Jérôme Solassol\(,\text{ }^{b,j,k} \) Dominique Decré\(,\text{ }^{a,b,c} \) Sylvain Godreuil\(,\text{ }^{a,b,c} \)

Département de bactériologie-virologie, Centre hospitalier régional universitaire (CHRU) de Montpellier, Montpellier, France\(;\) Université de Montpellier, Montpellier, France\(;\) Institut National de la Santé et de la Recherche Médicale (Infection by HIV and by agents with mucocutaneous tropism: from pathogenesis to prevention), Montpellier, France\(;\) Sorbonne University, UPMC Université Paris 06 CRT, CIRI, team E13, Paris, France\(;\) INSERM U1133, CIRI, team E13, Paris, France\(;\) AP-HP, Microbiology, St-Antoine Hospital, Paris, France\(;\) UMR 5119 ECOSYM, Equipe Pathogènes et Environnements, Laboratoire de Bactériologie, U.F.R. des Sciences pharmaceutiques et biologiques, Montpellier, France\(;\) Microbiology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France\(;\) Unité de Formation et de Recherche des Sciences de la Santé, Université de Ouagadougou, Burkina Faso; Department of Biopathology, CHRU Montpellier, Montpellier, France; Department of Clinical Oncoprotomieux, Montpellier Cancer Institute, Montpellier, France; MINEGEC UMR IRD 224-CNRS 5290, University of Montpellier, Centre IRD, Montpellier, France

Carbapenemase-producing Enterobacteriaceae (CPE) have been increasingly reported worldwide. The few studies available on CPE epidemiology in West and East Africa highlight the identification of carbapenemases in Cameroon (NDM-4), Kenya (NDM-1), Sierra Leone (VIM and DIM-1), Senegal (OXA-48), and Tanzania (KPC, IMP, OXA-48, VIM, and NDM) (1). Although \(\text{bla}_{\text{OXA-48}} \) genes are widely spread in North Africa, \(\text{bla}_{\text{OXA-48}} \) derivatives have been rarely reported in Africa. Indeed, \(\text{bla}_{\text{OXA-48}} \) was detected only twice in Egypt and \(\text{bla}_{\text{OXA-181}} \) (a point mutant analogue of OXA-48) only once in South Africa (1). Here, we describe the first four cases of Escherichia coli carrying the \(\text{bla}_{\text{OXA-181}} \) gene in Burkina Faso.

Four \(E. \text{coli} \) strains (Table 1) were isolated from four patients in two hospitals in Ouagadougou, Burkina Faso. Carbapenem MICs, determined using the Etest (bioMérieux), were 1 to 1.5 mg/liter, 0.125 to 0.75 mg/liter, and 0.25 to 0.5 mg/liter for ertapenem, doripenem, and imipenem, respectively (Table 1). Three patients received antibiotics before strain isolation (Table 1). None of the patients reported recent travel outside Burkina Faso. Multiplex PCR and DNA sequencing targeting the most prevalent extended-spectrum-\(\beta\)-lactamase (ESBL)- and carbapenemase-encoding genes (2, 3) revealed the presence of \(\text{bla}_{\text{CTX-M-15}} \) and \(\text{bla}_{\text{OXA-181}} \) in all four isolates. No other carbapenemase-encoding gene (corresponding to NDM, VIM, IMP, and KPC) was detected. Multi-locus sequence typing (MLST) (http://bigdb.web.pasteur.fr/) showed that the four strains belonged to new sequence type (ST) ST692, which is described here for the first time. Enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) (4) patterns (see Fig. S1 in the supplemental material) and the variable-number tandem-repeat (VNTR) (5) profile determined on the basis of analysis of 7 polymorphic loci \((6-1-5-8-3-5-1)\) gave similar results in all four \(E. \text{coli} \) strains. DNA regions surrounding the \(\text{bla}_{\text{OXA-181}} \) gene are detailed in Fig. 1 and showed that \(\text{bla}_{\text{OXA-181}} \) was part of the \(Tn_{2013} \) transposon, as previously described (10). The same genetic context was recovered in all six \(\text{bla}_{\text{OXA-181}} \)-surrounding sequences available in the GenBank database (GenBank accession numbers KP400525, AB972272, JN205800, NZ_JRKW01000020, JQ996150, and KT005457) (11, 12). The \(repA1 \) gene (encoding a CoE-type replication initiation protein) was downstream of \(Tn_{2013} \). This replicase gene was also found on plasmids pKP3-A (JN205800) and pMR3-OXA181 (NZ_JRKW01000020) that belong to the CoE and IncN incom:}

Citation

Address

Correspondence to Abdoul-Salam Ouédraogo, abdousal2000@yahoo.fr

Supplemental material for this article may be found at http://dx.doi.org/10.1128/AAC.00147-16.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.
patibility groups, respectively. This suggests that blaOXA-181 might have come from a ColE-type scaffold. Fluoroquinolone resistance gene qnrS1 was also detected downstream of blaOXA-181 (Fig. 1).

An IncX3-specific backbone was recovered at the 5′ extremity of blaOXA-181-surrounding regions and included, in addition to the repB replicase gene, the parA partition gene (13) and the umuD gene involved in SOS mutagenesis (14). Large-scale PCR mapping targeting various plasmid regions, including transfer, replication, association with antibiotic resistance, and other genetic elements, was performed.

TABLE 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EC187</th>
<th>EC187 (T)</th>
<th>EC292</th>
<th>EC292 (T)</th>
<th>EC309</th>
<th>EC309 (T)</th>
<th>EC327</th>
<th>EC327 (T)</th>
<th>E. coli J53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>F, 12 yrs old</td>
<td>M, 2 yrs old</td>
<td>F, 65 yrs old</td>
<td>F, 21 yrs old</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td>Urine</td>
<td>Suppuration</td>
<td>Suppuration</td>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical symptom or diagnosis</td>
<td>Dysuria</td>
<td>Abdominal pain</td>
<td>Peritonitis</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of antibiotics in the previous 3 mo</td>
<td>None reported</td>
<td>CFM, CRO, GE</td>
<td>AMC, GE</td>
<td>CRO, GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLST</td>
<td>ST692</td>
<td>ST692</td>
<td>ST692</td>
<td>ST692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNTR<sup>a</sup></td>
<td>6-1-5-8-3-5-1</td>
<td>6-1-5-8-3-5-1</td>
<td>6-1-5-8-3-5-1</td>
<td>6-1-5-8-3-5-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC (mg/liter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.125</td>
<td>ND</td>
<td>0.25</td>
<td>ND</td>
<td>0.25</td>
<td>ND</td>
<td>0.75</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
<td>0.38</td>
<td>0.5</td>
<td>0.38</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Associated resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESBL</td>
<td>CTX-M-15</td>
<td>None</td>
<td>CTX-M-15</td>
<td>None</td>
<td>CTX-M-15</td>
<td>None</td>
<td>CTX-M-15</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Non-β-lactam resistance</td>
<td>CIP, GE, SXT, TE</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

^a (T), transformant; F, female; M, male; ND, not determined; AMX, amoxicillin; AMC, amoxicillin-clavulanic acid (co-amoxiclav); CFM, cefixime; CIP, ciprofloxacin; CRO, ceftriaxone; GE, gentamicin; SXT, sulfamethoxazole-trimethoprim; TE, tetracycline.

^b Data represent CNV1, CNV2, CNV3, CNV4, CNV7, CNV14, and CNV15.

![Genetic map of the four plasmids harboring blaOXA-181](image)

FIG 1 Genetic map of the four plasmids harboring blaOXA-181 described in this report. Purple arrows represent the replicase genes. Light-gray arrows represent genes encoding hypothetical proteins. Yellow arrows represent genes encoding partition systems. Dark-gray arrows represent accessory genes. Green arrows represent transposase-encoding genes and insertion sequences. Red arrows represent antimicrobial resistance genes. Blue arrows represent genes implicated in plasmid transfer. The genetic context of blaOXA-181 is visually extended at the bottom. Plasmid pOXA181_EC14828 was harbored by an *E. coli* isolate in China (GenBank accession no. KP400525) and was used as a model to map the four blaOXA-181–carrying plasmids described in this report. Thin black lines represent the 25 oligonucleotide pairs used for PCR mapping in all four plasmids. All amplicons were fully sequenced and displayed 100% identity to those of plasmid pOXA181_EC14828.
and partition systems, was also performed and covered a total of 29,569 bp, which amounts to ca. 55% coverage compared to the estimated size of the plasmid (Fig. 1; see also Table S1 in the supplementary material). All PCR products displayed 100% identity to those encoded by the respective regions of plasmid pOXA181_EC14828 (Fig. 1).

Since the first description in Indian hospitals in 2011, OXA-181-positive Enterobacteriaceae have been reported worldwide (1, 11). Their emergence in West Africa in IncX3 plasmids is of particular concern because these plasmids mediate the spread of carbapenemases in Enterobacteriaceae (15, 16). Moreover, a recent study found an IncX3 plasmid harboring blaOXA-181 in a Klebsiella variicola isolate in fresh vegetables imported to Switzerland from Asia (12). This plasmid, named pKS22 (KT005457), is highly similar to pOXA181_EC14828 (100% coverage and 99% identity) and therefore to the four IncX3 plasmids described in our report. The presence of highly similar IncX3 plasmids in Asia, Africa, and Europe might suggest the epidemic potential of the members of this plasmid lineage and their role in worldwide dissemination of OXA-181.

ACKNOWLEDGMENTS

We thank the team of curators of the Institut Pasteur MLST and whole-genome MLST databases for data curation and for making them publicly available at http://bigdb.web.pasteur.fr/. We thank Elisabetta Andermarcher for assistance in preparing and editing the manuscript.

FUNDING INFORMATION

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES