Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites

Aditya S. Paul, Cristina K. Moreira, Brendan Elsworth, David R. Allred, Manoj T. Duraisingh

The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential for common antiparasitic treatments, we measured the sensitivities of multiple species of *Plasmodium* and *Babesia* parasites to the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity.

The apicomplexan phylum of eukaryotic microbial parasites is important in human and veterinary medicine. Apicomplexans cause malaria (*Plasmodium* spp.), babesiosis (*Babesia* spp.), toxoplasmosis (*Toxoplasma gondii*), and cryptosporidiosis (*Cryptosporidium* spp.), among other diseases. The *Plasmodium* and *Babesia* genera are relatively closely related among the apicomplexans (1) (last common ancestor, ∼55 million years ago [2]) (Fig. 1A) and share similar features in their biology, including mechanisms for host cell invasion and metabolism (3–6). Both *Plasmodium* and *Babesia* spp. are pathogenic during the stage of infection when parasites colonize host erythrocytes. Historically, drug development has focused more strongly on inhibitors for *Plasmodium* sp. parasites (7). Researchers have found that some antimalarial drugs also reduce proliferation of *Babesia* sp. parasites in erythrocytes as well (8, 9). The antimalarial atovaquone, a ubiquinone analog, is the preferred clinical treatment for human babesiosis in combination with azithromycin (10) and is used also in veterinary practice for babesiosis in dogs (11).

A renewed focus on malaria eradication has led to the identification of an unprecedented number of bioactive compounds that block proliferation of *Plasmodium falciparum* in erythrocytes (12). In 2011, the nonprofit group Medicines for Malaria Venture (MMV) made available to the research community the Malaria Box, a collection of 400 chemically diverse, previously uncharacterized blood-stage antimalarials (13). Researchers have screened the antiparasitic activities of the Malaria Box compounds in non-erythrocytic host cells for the apicomplexans *T. gondii*, *Cryptosporidium parvum*, and *Theileria annulata* and identified a limited number of inhibitors (<3% of the library) active against each of these species (14–16). Here, we measured the susceptibilities of multiple blood-stage *Plasmodium* and *Babesia* parasite species to the Malaria Box compounds and found that erythrocyte-specific apicomplexans share considerable chemical sensitivities during the clinically relevant stages of parasitic infection.

To determine the species-specific action of the Malaria Box compounds, we measured the chemical susceptibility of *Plasmodium knowlesi* in parallel with the reference species *P. falciparum* (13) (see Dataset S1 in the supplemental material). Endemic to macaque monkeys in southeast Asia and an emerging zoonosis in humans, *P. knowlesi* is distinguished from *P. falciparum* by its shorter blood-stage cell cycle and reduced rate of parasite multiplication per cycle (17). Additionally, *P. knowlesi* is closely related to the second most important human malaria parasite, *Plasmo-
specific differences between the *Babesia* species. Growth inhibition by the Malaria Box compounds administered at a single concentration (5 μM) is reproducible for either *Babesia* species (see Fig. S1A and B in the supplemental material).

Both *Babesia* parasite species tested are less sensitive than the *Plasmodium* species to the Malaria Box inhibitors, with blood-stage growth of either *B. bovis* or *B. divergens* sensitive to <10% of the small molecules at a submicromolar IC\(_{50}\) value compared to ~30% to 40% sensitivity for the *Plasmodium* species (Fig. 1C). At an IC\(_{50}\) of <25 μM, each *Babesia* species is susceptible to ~60% to 70% of the *Plasmodium*-active molecules. The lower sensitivities of the *Babesia* species to inhibitors compared to those of the *Plasmodium* species suggest variation in general features of these parasites (e.g., solute permeability of infected erythrocytes) (24). Significant correlation in the susceptibilities of *B. bovis* and *B. divergens* to Malaria Box compounds (Pearson’s \(r\) 0.246) (Fig. 1E) suggests frequent activity of these molecules against targets conserved within the *Babesia* genus. Additionally, the high number of Malaria Box compounds with inhibitory activity against all apicomplexan species tested (Fig. 1B and C) and significant cor-
Relation in the potencies of the compounds between the *Plasmodium* and *Babesia* parasite species (Fig. 1F) suggest targeting of features of blood-stage parasite biology common to the *Plasmodium* and *Babesia* genera.

To confirm the activities and determine the potencies of select babesicidal Malaria Box compounds identified in our screen, we purchased nine compounds from commercial vendors and conducted dose-response susceptibility assays (Table 1). The compounds include imidocarb (Malaria Box compound MMV665810), which is used for treatment of babesiosis in livestock (20). We tested these small molecules in *P. falciparum* proliferating in human erythrocytes, *B. bovis* in cow erythrocytes, and *B. divergens* in both human and cow erythrocytes. Imidocarb exhibited IC\textsubscript{50} values of 230 to 690 nM against the *Babesia* parasite species, and we observed IC\textsubscript{50}

<table>
<thead>
<tr>
<th>Structure and compound identification no.*</th>
<th>Molecular wt</th>
<th>(1\text{C}{50}/1\text{C}{90}) ((\mu)M) for(^b):</th>
<th>P. falciparum</th>
<th>B. bovis (cow)</th>
<th>B. divergens (human)</th>
<th>B. divergens (cow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atovaquone</td>
<td>366.8</td>
<td>(3.8 \times 10^{-4}/1.8 \times 10^{-3})</td>
<td>0.018/0.23</td>
<td>0.032/0.13</td>
<td>0.012/0.056</td>
<td></td>
</tr>
<tr>
<td>MMV665810 (imidocarb)</td>
<td>348.4</td>
<td>0.11/0.44</td>
<td>0.66/1.9</td>
<td>0.69/3.4</td>
<td>0.23/0.99</td>
<td></td>
</tr>
<tr>
<td>MMV665943</td>
<td>430.5</td>
<td>0.39/1.2</td>
<td>0.38/2.7</td>
<td>0.51/1.5</td>
<td>0.39/0.82</td>
<td></td>
</tr>
<tr>
<td>MMV667491</td>
<td>440.5</td>
<td>0.31/0.51</td>
<td>0.52/1.9</td>
<td>1.1/2.7</td>
<td>1.0/2.0</td>
<td></td>
</tr>
<tr>
<td>MMV019266</td>
<td>312.4</td>
<td>0.11/0.22</td>
<td>0.59/3.3</td>
<td>0.73/0.83</td>
<td>1.1/2.7</td>
<td></td>
</tr>
<tr>
<td>MMV66814</td>
<td>419.5</td>
<td>0.46/1.1</td>
<td>1.1/2.1</td>
<td>0.88/2.2</td>
<td>0.70/2.2</td>
<td></td>
</tr>
<tr>
<td>MMV396693</td>
<td>254.3</td>
<td>0.11/0.28</td>
<td>2.4/6.3</td>
<td>0.64/7.9</td>
<td>0.31/1.38</td>
<td></td>
</tr>
<tr>
<td>MMV666022</td>
<td>453.3</td>
<td>0.15/0.28</td>
<td>1.1/1.4</td>
<td>0.63/1.7</td>
<td>0.74/2.5</td>
<td></td>
</tr>
<tr>
<td>MMV085203</td>
<td>362.4</td>
<td>(8.6 \times 10^{-5}/0.058)</td>
<td>0.31/1.6</td>
<td>0.16/1.3</td>
<td>0.030/0.090</td>
<td></td>
</tr>
<tr>
<td>MMV019690</td>
<td>470.6</td>
<td>0.37/0.55</td>
<td>1.1/8.7</td>
<td>2.1/6.9</td>
<td>1.1/3.6</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) From the supplemental material of the original report of the Malaria Box (13).
\(^b\) Determined from 2 to 7 biological replicates.
values ranging from 30 nM to 2.4 μM for the other Malaria Box compounds in the Babesia species. In comparison, atovaquone demonstrated IC_{50} values of 12 to 32 nM in the Babesia species. Consistent with our primary screening data, the compounds are typically severalfold more potent against *P. falciparum* than against the Babesia species. Many of the compounds we tested exhibit IC_{50} values in all parasite species 4-fold or more lower than published IC_{50} values for inhibition of a human cell line (25) and do not violate the Lipinski rule of five parameters for the prediction of drug-like pharmacokinetics (13).

The breadth of babesiacidal Malaria Box inhibitors is striking in relation to the comparatively few Malaria Box inhibitors reported active against nonerythrocyte apicomplexans, such as *T. gondii*, *C. parvum*, and *T. annulata* (14–16). We speculate that this difference may reflect the existence of conserved targets required for proliferation within a similar erythrocytic niche for diverse apicomplexan hemoprotozoan parasites and/or the close phylogenetic relatedness of *Plasmodium* and *Babesia* spp. Our results suggest that, with the discovery of novel antimalarial chemotypes at the blood stage (26–30), a substantial fraction is likely also to be babesiacidal and potentially lead to compounds to be repurposed for the treatment of babesiosis. The work discussed here has implications for chemotherapeutic strategies regarding malaria and babesiosis and should inspire more detailed investigation of the comparative biology of these parasites.

ACKNOWLEDGMENTS

We thank the MMV for providing us the Malaria Box library of small-molecule inhibitors; Stewart Rudnicki, Rachel Warden, and Jennifer Smith (ICCB-L, Harvard Medical School) for assistance with automated liquid handling; Kirk Deitsch and Laura Kirkman (Weill Cornell Medical College) for providing us with *B. divergens*; and members of the Duraisingham laboratory for valuable feedback.

A.S.P., C.K.M., and B.E. performed all the experiments. A.S.P. analyzed data and prepared figures. D.R.A. assisted with establishment of designed experiments, interpreted data, and wrote the manuscript.

FUNDING INFORMATION

M.T.D. was supported by NIH grant R01AI091787, and D.R.A. was supported by the University of Florida Foundation and departmental funds.

REFERENCES

