Efficacy of rifaximin vs. vancomycin for treatment of Clostridium difficile-associated diarrhea and prevention of disease recurrence in hamsters

Rifaximin for Clostridium difficile-associated diarrhea

Efi Kokkotou¹, Alan C Moss¹, Athanasios Michos¹, Daniel Espinoza¹, Jeffrey W Cloud¹, Nasima Mustafa¹, Michael O’Brien², Charalabos Pothoulakis¹, Ciarán P. Kelly¹

Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA¹.
Mallory Institute and Department of Pathology, Boston University Medical Center, Boston, MA²

Corresponding Author:
Ciarán P Kelly MD
Division of Gastroenterology
Dana 601 / East Campus
Beth Israel Deaconess Medical Center
Boston MA 02215
T: (617) 667-1264
F: (617) 975-5071
ckelly2@bidmc.harvard.edu
Keywords: Pseudomembranous colitis, antibiotic associated diarrhea, animal model, vancomycin, rifaximin, *C. difficile*, hamsters, recurrence.
ABSTRACT

Clostridium difficile-associated colitis is an increasing cause of morbidity and mortality in hospitalized patients, with high relapse rates following conventional therapy. We sought to determine the efficacy of rifaximin, a novel non-absorbed antibiotic, in the hamster model of C. difficile-associated diarrhea (CDAD). Hamsters received clindamycin subcutaneously and 24hrs later were infected by gavage with one of two C. difficile strains: a reference strain (VPI 10463) and a current epidemic strain (BI17). Vancomycin (50mg/kg) or rifaximin (100, 50 and 25 mg/kg) were then administered orally for 5 days beginning either on the same day as infection (prevention) or 24 hours later (treatment). Therapeutic effects were assessed by weight gain, histology and survival. We found that rifaximin was as effective as vancomycin in the prevention and treatment of colitis associated with the two C. difficile strains that we examined. There was no relapse after treatment with vancomycin or rifaximin in hamsters infected with the BI17 strain. Hamsters infected with the VPI 10463 stain and treated with rifaximin did not develop relapsing infection within a month of follow-up, whereas the majority of vancomycin-treated animals relapsed (0% versus 75% respectively, p<0.01). In conclusion, rifaximin was found to be an effective prophylactic and therapeutic agent for CDAD in hamsters and was not associated with disease recurrence. These findings, in conjunction with the pharmacokinetic and safety profiles of rifaximin, suggest it is an attractive candidate for clinical use in CDAD.
INTRODUCTION

Clostridium difficile is the most commonly identified cause of hospital-acquired infectious diarrhea in developed nations, accounting for up to 20% of cases of nosocomial diarrhea (4, 15). There are approximately 500,000 annual cases in the U.S. alone, with an estimated annual CDAC hospital cost at $3.2 billion (17, 26). The incidence of C. difficile-associated diarrhea (CDAD) has increased dramatically in the last 5 years, and serious outbreaks with high mortality have been reported (18, 21, 30, 31). Two of the current epidemic C. difficile strains (BI6 and BI17) belong to the BI/NAPI group by restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis (PFGE), respectively, and to toxinotype III by restriction fragment–length polymorphism analysis (RFLP). They are characterized by the presence of the binary toxin CDT, a deletion in the tcdC locus whose gene product negatively regulates the production of toxins A and B, and often by resistance to fluoroquinolones (21, 33). The initiating factor in the vast majority of cases is prior antibiotic therapy, which disrupts normal colonic flora allowing colonization by C. difficile (6) and production of two toxins, A and B, that cause intestinal inflammation (34). Almost any antibiotic can predispose to CDAD, but clindamycin, penicillin, cephalosporins and fluoroquinolones are most commonly implicated (15, 18). Patients who acquire C. difficile infection may be asymptomatic carriers or may develop diarrhea, pseudomembranous colitis or toxic megacolon. Mortality rates of 2-15% have been reported due to toxic megacolon, colonic perforation, sepsis, systemic inflammatory response syndrome and requirement for emergency colectomy (1, 18, 21, 24, 27, 30).
The primary treatment for *C. difficile* associated diarrhea is administration of metronidazole or oral vancomycin (15). Prior to 2000 both metronidazole and vancomycin had reported efficacies of approximately 95% in CDAD (16). More recent data indicate that a failure to respond to metronidazole, the usual first line agent, is now more common raising concerns that the current treatment approach may be inadequate (3). Of further concern is that relapse after treatment of initial infection is common, occurring in approximately 20% of cases overall and in some series in as many as 50% (29, 35). Recurrent CDAD may result from persistence of bacterial spores, re-infection from the environment, and failure to develop a protective immune response (17, 38).

Although intermediate resistance of *C. difficile* strains to metronidazole and vancomycin have been reported, almost all episodes of recurrent CDAD result from strains susceptible to these antimicrobial agents and develop shortly after therapy has been completed (28).

Rifaximin, a non-absorbed antibiotic when administered orally, (8) is well tolerated and is almost completely excreted in the feces in its original form, making it ideally suited for use against *C. difficile*. It inhibits bacterial RNA synthesis, with activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria (19). Rifaximin has been proven efficacious in preventing or treating travelers’ diarrhea, caused by diarrheagenic and enterotoxigenic strains of *Escherichia coli* (10) and by Shigella (36). It also has excellent in vitro activity against *C. difficile* (19) and is associated with low rates of mutagenesis and resistance (19). In view of these characteristics, we sought to determine the effects of rifaximin at three different doses (25mg/kg, 50mg/kg and 100mg/kg) in a hamster model of CDAD, in which clindamycin administration, followed...
by exposure to \textit{C. difficile}, leads to \textcolor{red}{hemorrhagic cecitis} similar to fulminant antibiotic-associated pseudomembranous colitis in humans (2, 9).

\textbf{MATERIALS AND METHODS}

\textbf{Clindamycin-induced \textit{Clostridium difficile} colitis.} Golden Syrian hamsters purchased from Charles River were housed in cages in groups of 2 with free access to chow (Purina 5000) and tap water. Hamsters were conditioned with a single subcutaneous injection of clindamycin phosphate (10 mg/kg) (Sigma) to eliminate the normal flora and one day later (day 1) were infected by gavage with 10^3 cfu of a reference toxinogenic (binary toxin negative, toxin A positive, toxin B positive) \textit{C. difficile} strain (VPI 10463, ATCC # 43255) or of a hypervirulent epidemic strain of toxinotype III (BI17-6443) as previously described by us (21). Control animals received no \textit{C. difficile}. The animal studies were approved by the institutional animal care and use committee of Beth Israel Deaconess Medical Center.

\textbf{Antibiotic treatment.} Previous in vitro studies have reported that rifaximin was one of the most effective antibiotics (MIC$_{90}$ of 0.015 mg/L) when tested against 110 toxinogenic \textit{C. difficile} clinical isolates, including the one (BI17-6443) from the recent epidemic that we tested in our model (12, 19). Moreover, the incidence of spontaneously resistant to rifaximin \textit{C. difficile} mutants was found to be particularly low ($<1\times10^{-9}$) (19) while 3 out of the 110 toxinogenic clinical isolates were found to be resistant to rifaximin (12). Rifaximin (Salix Pharmaceutical Inc.) was fully suspended in aqueous solution of 0.1 M
Phosphate Buffer (pH of 7.4) plus 4.5 % SDS. Vancomycin is also effective against toxinogenic strains of *C. difficile* (MIC$_{90}$ of 1mg/L), and a dose of 50mg/kg has previously been shown to be effective in the hamster model of *C. difficile*-associated diarrhea (2, 23, 37). Hamsters (n=10/group) were treated by gavage with daily doses of vancomycin (50mg/kg) (Sigma), rifaximin (100, 50 and 25 mg/kg) or vehicle (4.5 % SDS in buffer) for a total of 5 doses. The administration of antibiotics was initiated at day 1 (prevention study) or at day 2 (treatment and relapse studies) as depicted in Fig. 1. The animals were weighed daily for one week and 2-3 times per week thereafter and observed two times per day for signs of morbidity or diarrhea. At the end of the observation period (day 7 or day 27), or at the time of death, the cecum was collected from each animal for histological evaluation of inflammation.

Histological examination. Hematoxylin & Eosin stained paraffin sections of the cecum were blindly evaluated by a GI pathologist (MO’B) and scored (0-3) for each of the following parameters associated with *C. difficile* colitis as previously described by us: a) epithelial damage, b) congestion and hemorrhage of the mucosa, and c) neutrophil infiltration (14). Histological analysis was performed in all animals included in the study, either at the time of their death due to *C. difficile* infection or at the end of the experiment.

Statistical analysis. Data were analyzed by Kaplan-Meier survival analysis and the logrank test, analysis of variance (ANOVA) with Bonferroni correction, Kruskal Wallis non parametric analysis and X2 using the StatView statistical software program (Abacus Concepts, Berkeley, CA). Results are expressed as mean ± SE unless otherwise indicated.
RESULTS

Rifaximin and vancomycin prevent \textit{C. difficile}-associated colitis. Hamsters (n=10/group) were conditioned with clindamycin (day 0) and 24hrs later (day 1) were infected with \textit{C. difficile} (VPI 10463) and received the first dose of antibiotic or vehicle treatment which was continued daily for a total of 5 antibiotic doses (Fig. 1). Surviving animals were sacrificed at day 7. The survival rate in non-infected animals was 100%. All vehicle-treated animals developed severe colitis after infection with \textit{C. difficile} and either died or euthanized in a moribund state by day 3. In contrast, 80%, 70% and 60% of animals receiving rifaximin treatment (100, 50 and 25 mg/kg, respectively) survived (Fig. 1a), indicating a dose dependent effect of rifaximin (Table 1). Similar survival rates (70%) were also observed in the vancomycin-treated animals. In the hamster \textit{C. difficile} challenge model, antibiotics do not completely prevent intestinal disease, as evidenced by weight loss in all infected animals compared to control. Control animals gained weight (6.2 ± 1.2\% of initial body weight) during the course of the experiment. The mean weight loss amongst the vancomycin-treated animals was –6.6 ± 1.8\% of their initial weight. Similar weight loss was observed in the rifaximin-treated animals (-8.1 ± 1.3\%, -7.9 ± 1.1\% and –8.4 ± 1.3\% in the 100, 50 and 25 mg/kg groups respectively). Hamsters that did not survive the infection up to day 7 were not included in the analysis of weights. There was no statistically significant difference in weights between any of the antibiotic-treated groups. All \textit{C. difficile}-challenged, vehicle-treated animals quickly developed severe colitis as assessed by histology scores (4.4 ± 0.3) (Fig. 2b). The mean histology score, including sick animals that had to be euthanized prior to the completion of the
experiment, in the vancomycin-treated group was 1.9 ± 1.0. Similar scores were observed in the rifaximin-treated animals (1.3 ± 0.9, 1.1 ± 0.6 and 1.8 ± 0.8 in the 100, 50 and 25 mg/kg groups respectively) (Fig. 2b). The difference between antibiotic-treated and vehicle treated animals was statistically significant (p < 0.01) but there was no difference between the vancomycin and rifaximin-treated hamsters. All control animals had uniformly normal cecal histology (0.0 ± 0.0 total histology score) at sacrifice. These results demonstrate that rifaximin at doses of 100, 50 and 25 mg/kg once daily was similar to vancomycin 50 mg/kg once daily in protecting against C. difficile-associated fatal cecitis, weight loss and intestinal injury.

Rifaximin and vancomycin are equally effective in treatment of C. difficile-associated colitis. In this experiment antibiotic treatment was started 24hrs after infection with C. difficile (VPI 10463) (Fig. 1), at which time all animals were developing severe cecitis. All non infected control animals survived to day 7, but none of the C. difficile challenged vehicle-treated animals. All hamsters treated with rifaximin 50mg/kg or 100 mg/kg, and vancomycin 50mg/kg survived and 80% of those treated with rifaximin 25 mg/kg (Fig. 3a). On histological examination (Fig. 3b) vehicle treated animals (right top) showed severe mucosal necrosis with hemorrhage, compared to control, no C. difficile exposed hamsters (left top), while the surviving rifaximin (100mg/kg) (bottom left) or vancomycin treated hamsters (bottom right) had normal histology. All antibiotic-treated animals had significantly lower histological scores than vehicle treated animals (Fig. 3c, p<0.001). The histological scores, including animals that did not survive the infection, were 7.5 ± 0.6 for the vehicle treated hamsters and 2.2 ± 0.3 and 2.3 ± 0.8 for the
rifaximin-treated (100mg/kg and 25mg/kg, respectively, Fig. 3c). The group treated with rifaximin 50mg/kg had a significantly (p<0.05) reduced total histological score (0.6 ± 0.3) when compared to other doses of rifaximin and vancomycin (2.5 ± 0.6). Overall, rifaximin at doses of 100 and 50 mg/kg administered after the establishment of C. difficile infection had a similar to vancomycin 50 mg/kg efficacy in treating cecitis, weight loss and intestinal injury in the hamster CDAD model.

Rifaximin prevents recurrence of C. difficile-associated colitis. We then studied a third cohort of hamsters with the intention of examining whether rifaximin and vancomycin were associated with differing rates of CDAD recurrence. Antibiotic treatment was administered on days 2 to 6 inclusive (Fig. 1). The 20 animals that survived their initial episode of C. difficile (VPI 10463) infection were maintained under observation for an additional 20 days after the termination of antibiotic treatment with rifaximin (either dose, n=12) or vancomycin (n=8) on day 6 (Fig. 1, 4a). In one previous study in hamsters we observed recurrence of C. difficile approximately 10-15 days after initial infection. (2) As illustrated in Fig. 4a, 100% of rifaximin-treated hamsters (regardless of dosage level) survived to day 28 without recurrence of CDAD, while only 25% (2 out of 8) of the vancomycin treated animals survived the relapse (p<0.01). After a period of weight loss immediately following C. difficile challenge, hamsters treated with 100mg/kg of rifaximin recovered and started gaining weight although at a lower rate than control animals (Fig. 4b). Overall, control hamsters gained 24.4 ± 1.2% and rifaximin treated 16.7 ± 2.4% of their initial body weight, p<0.01).
On histological examination (Fig. 4c), control animals (top left) had no lesions in the mucosal or sub-mucosal areas while vehicle treated animals (top right) exhibited extensive necrosis, congestion and hemorrhage with reparative changes in residual crypts. Vancomycin treated animals (bottom right) developed compete mucosal necrosis with hemorrhage in contrast to rifaximin (100mg/kg) treated hamsters that had normal mucosa (bottom left). As illustrated in Fig. 4d control animals had uniformly normal cecal histology (0.0 ± 0 total histology score). All *C. difficile* infected, vehicle-treated animals quickly developed severe colitis and had high histology scores (6.6 ± 0.5). The mean histological score amongst all the vancomycin-treated animals was 4.9 ± 1.0. Similar scores were observed in the hamsters treated with rifaximin 25 mg/kg and 50 mg/kg (5.8 ± 0.8 and 4.8 ± 1.1 respectively). Histology score of hamsters treated with 100mg/kg of rifaximin, including the 2 out of 10 that did not survive, were significantly lower (1.6 ± 0.7) than each of the other four *C. difficile* challenged groups (all groups p < 0.001; and p = 0.02 compared to vancomycin). Histological appearance was completely normal in hamsters surviving the end of the study.

Rifaximin and vancomycin are effective in preventing and treating infection with an epidemic strain of *C. difficile* (BI17) and preventing disease relapse. In addition to a reference toxinogenic *C. difficile* strain (VPI 10463) we also examined the effectiveness of rifaximin in treatment of CDAD caused by an epidemic strain (BI17-6443). (21) We conducted two studies, one for prevention of disease development and the other for treatment, (n=10/group for rifaximin and vancomycin treatments and n=8/group for vehicle), their design was as described in Fig. 1. Both cohorts were monitored for one
month, to access rates of recurrent infection. All mice treated with either rifaximin (100 mg/kg) or vancomycin (50 mg/kg) survived the acute infection with this hypervirulent strain. Moreover, we did not observe any disease relapse with this particular strain of *C. difficile* in antibiotic treated hamsters during this follow-up period.
DISCUSSION

We report here that rifaximin was equivalent to vancomycin in prevention and treatment of weight loss, histological inflammation and fatal CDAD in hamsters, caused by two different \textit{C. difficile} strains. However, hamsters treated effectively with rifaximin for acute infection with the \textit{C. difficile} strain VPI 10463 did not develop recurrent fatal cecitis after discontinuation of therapy, whereas the majority of vancomycin-treated animals relapsed (0\% versus 75\% respectively, \textit{p}<0.01). In humans, the standard management of \textit{C. difficile}-associated diarrhea is discontinuation of the precipitating antibiotic(s) and treatment with metronidazole or vancomycin (20). However, one recent study reported overall efficacy rates of only 50\% with metronidazole, with 22\% of patients remaining symptomatic despite treatment (25). In the present study the overall efficacy in treating initial infection in hamsters, including data from all three cohorts, was 87\% for rifaximin (100mg/kg), similar to the 83\% of vancomycin (50mg/kg) (Table 1).

In humans, about 15\%-30\% of those treated for their first episode of \textit{C. difficile} infection will experience a second episode of the disease, usually within 2-10 days after the completion of their antibiotic therapy (29). Relapse rates of up to 56\% with vancomycin, and 45\% with metronidazole treatment have been reported (29, 39). Disease relapse may originate from persistence of spores in the gut after the initial infection or due to re-infection from the environment (38) and in some patients more than ten recurrence episodes have occurred. About two thirds of patients with a first incidence of relapse are at risk for subsequent relapses (22). In our experience, the recurrence rate in hamsters infected with the VPI 10463 strain of \textit{C. difficile} after vancomycin treatment was 75\% in the present study and 50\% in a previous one (2), while no relapse with either antibiotic
treatment was observed when hamsters were infected with the new epidemic BI17 strain. This is unexpected since it has been reported that in humans, the BI strains responsible for recent epidemics of CDAD have been associated with increased relapse rates (5). To our knowledge studies of recurrent CDAD in hamsters have not been reported previously for a BI strain and our findings may reflect inter-species differences in disease manifestations and severity between humans and hamsters. The most effective dose of rifaximin used in this study (100mg/kg) is almost 10-fold higher than the dosage used in patients with CDAD (400mg-800mg daily, in 2-3 divided doses) (11, 13). The dose of vancomycin used in hamsters (50mg/kg) is also higher than the one used in humans (500mg) (2, 23, 37); therefore it is plausible to result in greater disturbance of the normal flora and increased risk for relapse in this model. However, studies in humans do not support this concern since they report high-dose vancomycin to be at least equivalent to low-dose vancomycin in preventing relapse (22). Moreover, the same study concluded that the duration of vancomycin therapy, than the dose per se, is the most important determinant of risk for relapse (22).

The management of recurrent CDAD remains problematic and in addition to repeat courses of vancomycin, therapies such as probiotics, which restore the normal flora, agents that block toxin A binding such as cholestyramine and immunotherapy with anti-toxin A antibodies have been applied (20). Rifaximin treatment of the initial infection might be proven beneficial to prevent relapse in clinical practice. Alternatively, it could be used to treat the first relapse and thus reduce the risk for subsequent episodes.
Due to minimal systemic absorption (<1%) (8), rifaximin was found in randomized clinical trials to be a safe drug, with adverse effects not different from placebo (10, 32). It has also been reported that rifaximin had minimal effects in altering the intestinal microflora with respect to coliforms and enterococci (7, 10). The ability of rifaximin to preserve elements of the colonic flora while eradicating *C. difficile* may be important in restoring colonization resistance and provides another possible mechanism for the absence of recurrent CDAD after rifaximin therapy. Studies of bacterial resistance to rifaximin have demonstrated that *C. difficile* has a very low incidence of spontaneously-resistant rifaximin mutants (19). However, among 110 toxigenic clinical isolates evaluated, 3 of them (2 from Argentina in 1998 and 1 from Chicago in 1995) were found to be resistant to rifaximin in vitro (12).

In conclusion, rifaximin is effective for prevention and treatment of fulminant *C. difficile* associated colitis in clindamycin-treated hamsters. Our major finding was that, when compared to vancomycin, rifaximin was found to be associated with significantly lower rates of recurrent CDAD after completion of therapy for the initial infection with the VPI 10463 strain of *C. difficile*. Lack of systemic absorption and a good safety profile make rifaximin an attractive candidate for use in the treatment of CDAD. Indeed, while this paper was under revision, the first report of rifaximin preventing recurrence of *C. difficile* infection in 7 out of 8 women with a history of multiple episodes of CDAD was published (13). These data indicate the need for prospective controlled trials of rifaximin both for primary therapy and for secondary prevention of CDAD.
ACKNOWLEDGMENTS: This work was supported by a grant from Salix Pharmaceuticals to Dr Kelly. The company had no direct input in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

We would like to thank Dr Dale N. Gerding for kindly providing us with the BI strain of *C. difficile* and Dr J. Thomas Lamont for his critical review of the manuscript.

REFERENCES

Antimicrob Agents Chemother 51:2716-9

difficile and the rate of selection of spontaneously resistant mutants against
representative anaerobic and aerobic bacteria, including ammonia-producing

Gastroenterology 130:1311-6.

cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease.

nitazoxanide against Clostridium difficile. Antimicrob Agents Chemother
44:2254-8.

E. Deveney. 2002. Clostridium difficile colitis: an increasingly aggressive

25. Musher, D. M., S. Aslam, N. Logan, S. Nallacheru, I. Bhaila, F. Borchert, and
R. J. Hamill. 2005. Relatively poor outcome after treatment of Clostridium

emerging infectious challenge of clostridium difficile-associated disease in

TABLE 1: Rifaximin and Vancomycin efficacy against *C. difficile* strain VPI 10463

<table>
<thead>
<tr>
<th>no infection</th>
<th>Vancomycin 50 mg/kg</th>
<th>Rifaximin 100 mg/kg</th>
<th>Rifaximin 50 mg/kg</th>
<th>Rifaximin 25 mg/kg</th>
<th>vehicle cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>83%</td>
<td>87%</td>
<td>67%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 1 legend:

- Hamsters were treated with clindamycin followed 24hrs later by *C. difficile* strain VPI 10463 infection (Day 1). In cohort A antibiotic treatment (a total of 5 daily doses) was given simultaneously with *C. difficile* while in cohorts B and C at 24hrs later. Survival was evaluated at day 7. In the table are presented the % and the actual numbers of hamsters that survived out of 10 animals per group enrolled in each study. Hamster survival rate between the doses of rifaximin used was significantly different (p<0.01 by X²) indicating a dose effect.
FIGURE LEGENDS:

FIG. 1. Schematic representation of induction and treatment of *C. difficile* colitis in hamsters. At day 0, hamsters were treated sc with clindamycin phosphate (10 mg/kg). At day 1, they received by gavage 10^5 cfu of toxigenic *C. difficile* strain VPI 10463 or BI17-6443. In the prevention study, hamsters received daily antibiotic treatments for days 1 to 5 and in the treatment and relapse studies for days 2 to 6. Surviving hamsters were sacrificed on day 7 (prevention and treatment studies) or were monitored for disease relapse up to day 27.

FIG. 2. Rifaximin prevents *C. difficile*-induced enterocolitis in hamsters. At day 0, hamsters were treated sc with clindamycin phosphate (10 mg/kg). At day 1, they received by gavage 10^5 cfu of toxigenic *C. difficile* strain VPI 10463 and at the same time rifaximin at various doses (Rx100: rifaximin 100mg/kg; Rx50: rifaximin 50mg/kg; Rx25: rifaximin 25mg/kg; vancomycin Vn50: vancomycin 50mg/kg). Control hamsters were treated with clindamycin but not exposed to *C. difficile* and received for 5 days vehicle treatments. (A) Kaplan-Meier survival analysis up to day 7 of hamsters receiving various antibiotic treatments (*p*<0.001 by log rank). (B) H&E stained histological sections of cecal biopsies from all hamsters included in the study were blindly evaluated by an experienced Pathologist and scored (0-3) for each of the following parameters: a) epithelial damage, b) congestion and hemorrhage of the mucosa, and c) neutrophil infiltration. Histological score represents the sum of the above scores. ***p*<0.001 compared to vehicle treatment.
FIG. 3. Rifaximin effectively treats C. difficile-induced enterocolitis. At day 0, hamsters were treated sc with clindamycin phosphate (10 mg/kg). At day 1, they received by gavage 10^5 cfu of toxigenic C. difficile strain VPI 10463. Antibiotic treatments were initiated the day after C. difficile exposure, at day 2, and continued daily for a total of 5 doses. Rx100 = rifaximin 100mg/kg, Rx50 = rifaximin 50mg/kg, Rx25 = rifaximin 25mg/kg, Vn50 = vancomycin 50mg/kg. (A) Kaplan-Meier survival analysis up to day 7 of C. difficile infected hamsters receiving various antibiotic treatments (p<0.001 by log rank). (B) H&E sections of cecal mucosa (magnification 20x objective). Control (top left): Histological normal cecal mucosa. Vehicle (top right): Hemorrhagic necrosis of the full thickness of the mucosa. Rifaximin (100mg/kg) (bottom left): Histological normal cecal mucosa. Vancomycin (50mg/kg) (bottom right): Histological normal cecal mucosa. (C) H&E stained histological biopsies of cecal tissue from all hamsters enrolled in the study were blindly evaluated by an experienced Pathologist and scored (0-3) for a) epithelial damage, b) congestion and hemorrhage of the mucosa, and c) neutrophil infiltration. Histological score represents the sum of the above scores. **p<0.01 compared to vehicle treatment.

FIG. 4. Rifaximin prevents relapse of C. difficile-induced enterocolitis after discontinuation of treatment. At day 0, hamsters were treated sc with clindamycin phosphate (10 mg/kg). At day 1, they received by gavage 10^5 cfu of toxigenic C. difficile strain VPI 10463. Antibiotic treatments (Rx100: rifaximin 100mg/kg; Rx50: rifaximin 50mg/kg; Rx25: rifaximin 25mg/kg; Vn50: vancomycin 50mg/kg) were initiated the day after C. difficile exposure, at day 2, and continued daily for a total of 5 doses. (A) Kaplan-
Meier survival analysis up to day 27 of *C. difficile* infected hamsters receiving various antibiotic treatments (p<0.001 by log rank). (B) Body weight gain (as % of the initial body weight) overtime (control: open squares; rifaximin 100mg/kg: dark squares). (C) Representative H&E stained histological sections (magnification 20x objective) of cecum collected at the end of the study or at death from control hamsters (non-infected) and vehicle, rifaximin (100mg/kg) or vancomycin (50mg/kg) treated. (D) H&E stained histological sections of cecal biopsies from all hamsters included in the study were blindly evaluated by an experienced Pathologist and scored (0-3) for a) epithelial damage, b) congestion and hemorrhage of the mucosa, and c) neutrophil infiltration. Histological score represents the sum of the above scores. **p< 0.01 compared to vehicle treated hamsters.
Figure 1

Clindamycin C. difficile stop
DAY 0 DAY 1 DAY 7

prevention treatment relapse

follow up

Vancomycin / Rifaximin
Figure 3

(A) Cumulative Survival

- Control
- Rx 100mg/kg
- Rx 50mg/kg
- Rx 25mg/kg
- Vn 50mg/kg
- Vehicle

(DAYS)

(B) control vehicle

(control: top left, vehicle: bottom left)

(C) Histological score

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Histological Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>1</td>
</tr>
<tr>
<td>Vehicle</td>
<td>7</td>
</tr>
<tr>
<td>Vn50</td>
<td>4</td>
</tr>
<tr>
<td>Rx25</td>
<td>2</td>
</tr>
<tr>
<td>Rx50</td>
<td>1</td>
</tr>
<tr>
<td>Rx100</td>
<td>1</td>
</tr>
</tbody>
</table>

** indicates significant difference.