Combination Echinocandin-Polyene Treatment of Murine Mucormycosis

Ashraf S. Ibrahim,¹,²* Teclegiorgis Gebremariam,¹ Yue Fu,¹,² John E. Edwards Jr.,¹,² Brad Spellberg,¹,²

¹Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California; and the
²David Geffen School of Medicine at UCLA

Running Title: Echinocandin-Polyene Treatment of Mucor

Word Count = 897

Keywords: Rhizopus oryzae, Liposomal amphotericin B, Micafungin, Anidulafungin, Mucormycosis

*Corresponding author: Dr. Ashraf S. Ibrahim, Division of Infectious Diseases, Harbor-UCLA Medical Center, 1124 West Carson St., RB2, Torrance, CA 90502, 310-222-6424 (phone), 310-782-2016 (fax), ibrahim@labiomed.org
ABSTRACT

We previously found that caspofungin synergized with amphotericin B lipid complex in treating murine mucormycosis. We now report similarly enhanced activity of liposomal amphotericin combined with micafungin or anidulafungin in mice with disseminated mucormycosis. The efficacy of combination echinocandin-polyene therapy for mucormycosis is a class effect.
It is well established that echinocandins have minimal activity against the agents of mucormycosis when tested in vitro by standard techniques (1, 2). However, it is now known that *R. oryzae* expresses the target enzyme for echinocandins (4), and in a murine model of disseminated mucormycosis, we previously reported that caspofungin did have limited activity against *R. oryzae* (4). Furthermore, we found that a combination of caspofungin plus amphotericin B lipid complex was synergistic in the treatment of disseminated mucormycosis in diabetic ketoacidotic (DKA) mice (9). While either therapy alone mediated no survival benefit, the combination significantly improved survival (50% survival for the combination vs. 0% for placebo, caspofungin alone, or amphotericin B lipid complex alone). To further investigate the potential role of combination therapy in the treatment of mucormycosis, we sought to determine if the synergy between caspofungin and amphotericin B lipid complex reflected a class effect by testing combinations of two other echinocandins with a different lipid polyene.

BALB/c male mice were rendered diabetic with a single i.p. injection of 210 mg/kg of streptozotocin in 0.2 ml citrate buffer 10 days prior to fungal challenge, as we have previously described (3-6, 9). Glycosuria and ketonuria were confirmed in all mice 7-10 days after streptozotocin injection. DKA mice were infected via the tail-vein with *Rhizopus oryzae* 99-892, a clinical isolate known to be virulent in our model (6, 9). Pilot studies of micafungin or anidulafungin monotherapy were performed to determine doses to be used in subsequent combination therapy studies. While no monotherapy doses of micafungin or anidulafungin significantly improved survival compared to placebo, micafungin at 1 or 3 mg/kg/d and anidulafungin at 1 or 10 mg/kg/d trended to benefit (data not shown).

To determine the efficacy of combination therapy, DKA mice were infected with *R. oryzae* and treated with liposomal amphotericin B (LAmB) (5 mg/kg/day [initially dissolved in
water and final concentration made in 5% dextrose water), micafungin (1 or 3 mg/kg/d in PBS), anidulafungin (1 or 10 mg/kg/d [initially dissolved in 20% ethanol and final concentration made in 5% dextrose water]), combinations thereof, or placebo (5% dextrose water or 5% dextrose water containing the appropriate amount of ethanol). The LAmB dose was chosen based on previously established low efficacy as monotherapy (6), thereby enabling statistical detection of potentially enhanced efficacy of combination therapy. Treatments were administered i.v. for 4 days starting 24 h after infection.

Combination of LAmB plus micafungin at 1 mg/kg/d synergistically improved survival compared to either monotherapy arm (Fig. 1A). Combination therapy with micafungin at 3 mg/kg/d was not similarly synergistic, consistent with our previous report of synergy with caspofungin at 1 mg/kg/d but not at 5 mg/kg/d (9). Monotherapy with micafungin at 3 mg/kg/d resulted in more surviving animals than monotherapy with 1 mg/kg/d, but the difference in surviving animals or in time to death was not significant ($P \geq 0.1$ for both comparisons).

To determine if combination therapy also reduced kidney fungal burden, as we have previously described for caspofungin, DKA mice were again infected with R. oryzae and treated as above. Mice were sacrificed after 96 h and kidneys (primary target organ)(9) were gently homogenized, as we have previously described (6), and quantitatively cultured. Combination therapy with micafungin at 1 mg/kg/d significantly reduced tissue fungal burden compared to all other groups (Fig. 1B).

Similarly, combination of LAmB plus anidulafungin synergistically improved survival compared to either monotherapy arm, but the benefit for anidulafungin was only seen at the 10 mg/kg/d dose (Fig. 2A). No benefit of combination therapy was seen at the 1 mg/kg/d dose of anidulafungin. Combination therapy with anidulafungin at 10 mg/kg/d significantly reduced
tissue fungal burden compared to placebo and anidulafungin alone, and LAmB also reduced fungal burden compared to placebo (Fig. 2B).

To determine the efficacy of combination therapy in an alternate model, mice were made neutropenic by administration of a single dose of cyclophosphamide (200 mg/kg) ip. Two days after the treatment (on the day neutropenia began), mice were infected via the tail-vein with *R. oryzae* and treated with placebo, anidulafungin (10 mg/kg/d), LAmB (3 mg/kg/d [based on preliminary data demonstrating limited survival benefit for infected mice treated with this dose]), or a combination for 6 days starting 24 h after infection, reflecting the duration of neutropenia in this model (10). Only mice treated with combination therapy demonstrated survival benefit compared to placebo (Fig. 3).

These data extend our prior report of the efficacy of combination caspofungin plus amphotericin B lipid complex therapy for mucormycosis in the same DKA mouse model. The enhanced efficacy of combination therapy of echinocandins and lipid polyenes for murine mucormycosis appears to be a class effect, although optimal doses for this enhanced efficacy differ between caspofungin/micafungin (1 mg/kg/d) and anidulafungin (10 mg/kg/d). It is unclear why paradoxical loss of efficacy against mucormycosis at higher doses was seen with caspofungin (4, 9) and micafungin but not with anidulafungin.

It is not known why echinocandins synergize with polyenes against mucormycosis infections. However, while the effect of combination therapy on tissue fungal burden has been variable depending on the polyene and echinocandin used, and on fungal inoculum and technique used to measure fungal burden (qPCR (9) vs. colony counts as in this study), survival was improved in all experiments. These data suggest that enhanced clearance of fungus is not the predominant mechanism by which combination therapy is improving efficacy against this
disease. The effect of combination echinocandin-polyene therapy on *R. oryzae* virulence and on host response (7, 8) to the fungus is under current investigation.

Given the poor outcomes of mucormycosis with current treatments, clinical investigation of the potential for combination echinocandin-polyene therapy to improve survival is warranted.
ACKNOWLEDGMENTS

This work was supported by Public Health Service grants R01 AI063503 and R21 AI064716 and research and educational grants from Astellas Pharmaceuticals, and Pfizer Inc to A.S.I. B.J.S. is supported by Public Health Service grant K08 AI060641 and American Heart Beginning Grant-in-Aid 0665154Y and the Liu Young Investigator in Biomedical Research. Research described in this manuscript was conducted at the research facilities of the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center.

Disclosures: A.S. Ibrahim has received research support from Astellas, Gilead, Enzon, Merck, and Pfizer, and has participated in educational programs funded by Astellas. J.E. Edwards, Jr. serves on the scientific advisory boards of Pfizer, Merck, and Gilead, has participated in educational programs regarding fungal infections funded by Pfizer, Merck, and Astellas, and has received research laboratory support from Pfizer, Merck, and Gilead. B. Spellberg has received consulting fees from Pfizer, research support from Astellas, Gilead, Enzon, Merck, and Pfizer, and is on the speakers’ bureau of Merck, Pfizer, and Astellas.
REFERENCES


Figure Legends

FIG. 1. Combination therapy of LAmB and micafungin improves survival and reduced kidneys fungal burden of DKA mice with mucormycosis. (A) Survival of DKA mice (n=16 for placebo and combination arms and 8 for monotherapy arms) infected with R. oryzae (2.2 x 10^4 spores). *P \leq 0.03 compared to placebo, LAmB, or micafungin by log-rank test. (B) Kidney fungal burden of DKA mice (n= 7 for all arms except for combination arm which had 8) infected with R. oryzae (2.0 x 10^4 spores) and treated 24 h post infection for three consecutive days. Data are the displayed as medians ± interquartile ranges. The y-axis reflects the lower limit of detection of the assay. *P <0.03 compared to placebo or monotherapy arms by Mann Whitney U-test.

FIG. 2. Combination therapy of LAmB and anidulafungin improves survival and reduced kidneys fungal burden of DKA mice with mucormycosis. (A) Survival of DKA mice (n=16 from two separate experiments with similar results) infected with R. oryzae (2.0 x 10^4 spores). *P <0.05 compared to all other arms by log-rank test. (B) Kidney fungal burden of DKA mice (n= 9) infected with R. oryzae (4.0 x 10^4 spores) and treated 24 h post infection for three consecutive days. Data are the displayed as medians ± interquartile ranges. The y-axis reflects the lower limit of detection of the assay. *P <0.003 compared to placebo or Anidulafungin. †P <0.05 compared to placebo or anidulafungin by Mann Whitney U-test.

FIG. 3. Combination therapy of LAmB and anidulafungin improves survival of neutropenic mice (n=10) infected with R. oryzae (2.1 x 10^4 spores). *P =0.04 compared to placebo by log-rank test.
Figure 1

A) 

B) 

Figure 1
Figure 2
Figure 3

Survival across different treatments:
- Placebo
- LAmB 3
- Anidula 10
- LAmB3 + Anidula 10

Days post infection: 0, 7, 14, 21

Survival: 0%, 20%, 40%, 60%, 80%, 100%