NONCLINICAL SAFETY PROFILE OF TELBIVUDINE, A NOVEL POTENT
ANTIVIRAL AGENT FOR THE TREATMENT OF HEPATITIS B

Edward G. Bridges, Jules R. Selden*, Shouqi Luo

Idenix Pharmaceuticals, Inc., One Kendall Square, Cambridge, MA 02139, USA

Running title: TELBIVUDINE NONCLINICAL SAFETY PROFILE

*Corresponding author:

Jules R. Selden, D.V.M., Ph.D.
Idenix Pharmaceuticals Inc.
60 Hampshire Street
Cambridge, MA 02139
Phone: (617) 995-9800
Fax: (617) 224-4350
E-mail: selden.jules@idenix.com

Current Address:
Edward Bridges, Ph.D.
West Virginia School of Osteopathic Medicine
400 North Lee Street
Lewisburg, WV 24901
Phone: (304) 647-6439
E-mail: ebridges@wv.wvsom.edu
Telbivudine is a novel nucleoside drug recently approved for the treatment of patients with chronic hepatitis B. Its nonclinical safety was evaluated in a comprehensive program of studies including safety pharmacology, acute and chronic toxicity, reproductive and developmental toxicity, genotoxicity, and carcinogenicity.

There were no test article-related effects observed in an *in vitro* hERG assay, or in a core battery of safety pharmacology studies (central nervous system, respiratory and cardiovascular safety pharmacology studies). Telbivudine was well tolerated in rats and in monkeys following single oral doses up to 2000 mg/kg/day. Except for equivocal axonopathic findings in monkeys and occasional incidences of emesis, soft feces, and minor changes in body weights and food consumption, there was no target organ toxicity observed in mice, rats, or monkeys following oral administration for up to 3, 6, or 9 months, respectively, at doses up to 3000 mg/kg/day. Axonopathy in the sciatic nerves and in the spinal cord of monkeys dosed at 1000 mg/kg/day observed in a 9-month study was considered equivocal as the role of telbivudine in the injury could not be determined. Slightly higher incidence of abortion and premature delivery observed in rabbits dosed at 1000 mg/kg/day were considered secondary to maternal toxicity. There was no evidence of genotoxicity or carcinogenicity. These results suggest that telbivudine has a favorable safety profile and support its use in patients with chronic compensated hepatitis B viral infection.
INTRODUCTION

Telbivudine (β-L-2′-deoxythymidine) is the unmodified β-L enantiomer of the naturally occurring nucleoside, thymidine (Figure 1). The chemical name is 1-((2S,4R,5S)-4-hydroxy-5-hydroxymethyltetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione, or 1-(2-deoxy-β-L-ribofuranosyl)-5-methyluracil. Its molecular formula is C_{10}H_{14}N_{2}O_{5} with a formula weight of 242 g/mol.

Nucleoside/nucleotide analogs have been proven to be effective for the treatment of HBV and HIV. To date, four nucleoside/nucleotide analogs, lamivudine, adefovir dipivoxil, entecavir, and telbivudine, have been approved by the United States Food and Drug Administration for the treatment of HBV (16, 27). These agents vary with respect to antiviral and clinical efficacy, resistance profiles, and tolerability and safety (17). A major safety concern for this class of drugs is mitochondrial toxicity, which is manifested as hepatic failure, nephrotoxicity, pancreatitis, neuropathy, myopathy and lactic acidosis (1, 2, 3, 5, 6, 8, 15, 18, 19, 22, 24, 29). Furthermore, emergence of drug-resistant virus in patients undergoing long-term maintenance therapy with these drugs can result in diminished drug efficacies (9, 30).

Telbivudine shows potent, selective, and specific antiviral activity against HBV and other hepadnaviruses (4, 14). Telbivudine is phosphorylated by intracellular thymidine kinases to the active triphosphate form, which has an intracellular half-life of 14 hours (12, 25) Telbivudine 5′-triphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate, thymidine 5′-triphosphate. Incorporation of telbivudine 5′-triphosphate into viral DNA causes DNA chain termination, resulting in inhibition of HBV replication (4, 12).
In hepatoma cell culture assays, telbivudine inhibited HBV production with a mean 50% inhibitory concentration (IC\textsubscript{50}) ranging from 0.05 to 0.65 µM depending on the cell type, growth conditions and assay used. Telbivudine was active against duck HBV in primary duck hepatocytes (IC\textsubscript{50}=0.18 µM). In the woodchuck model of chronic hepatitis, serum levels of woodchuck hepatitis virus DNA decreased by 108 genome equivalents per milliliter after 4-6 weeks of treatment with 10 mg/kg/day of telbivudine. In enzymatic assays, telbivudine 5’-triphosphate inhibited the woodchuck hepatitis virus DNA polymerase with an IC\textsubscript{50} value of 0.24 µM (4, 25).

Telbivudine was relatively non-toxic in a variety of cell types. The 50% cytotoxic concentration (CC\textsubscript{50}) was >2000 µM in cultured human hepatoma cells, >200 µM in human peripheral blood mononuclear cells (25), >400 µM in human foreskin fibroblasts (unpublished data). Granulocyte-macrophage progenitors (CFU-GM) and erythroid progenitors (BFU-E) exposed to telbivudine in clonogenic assays, which routinely detect the cellular toxicity of zidovudine (AZT), were not affected at 10 µM (25).

This article reports results of the extensive nonclinical safety program for telbivudine designed to characterize its toxicity profile and to identify biomarkers for toxicity monitoring in patients.

METHODS AND MATERIALS

Compound. Telbivudine was manufactured at Microbiologica Quimica e Farmaceutica, (Rio de Janeiro, RJ, Brazil) in compliance with concurrent Good Manufacture Practice. The purity was ≥99.1%. Telbivudine was formulated in 0.5% (w/v) carboxymethylcellulose and administered to mice, rats, rabbits, or monkeys at a dose volume of 5 or 10 mL/kg.
Animals. CD-1 and CB6F1 mice were obtained from Charles River Laboratories (Raleigh, NC). CB6F1-Tg rasH2 mice were obtained from the Central Institute for Experimental Animals (Kanagawa, Japan). Sprague-Dawley rats (Crl:CD® (SD)IGS BR) were obtained from Charles River Laboratories (Raleigh, NC). Female New Zealand White rabbits were obtained from Covance Research Products, Inc. (Denver, PA). Cynomolgus monkeys (Macaca fascicularis) were obtained from Charles River Primates (Houston, TX.); Covance Research Products, Inc. (Alice, TX.); Primate Products, Inc. (Miami, FL); or Guangdong Scientific Instruments and Materials Import and Export Corporation (Guangdong, China). Animal studies were conducted at SNBL USA, Ltd (Everett, WA), Charles River Laboratories (Horsham, PA and Worcester, MA), or Covance Laboratories Inc (Vienna, VA) according to Good Laboratory Practice or accepted scientific and industrial standards.

Safety Pharmacology Studies. Safety pharmacology studies were performed to assess the potential for telbivudine to produce any adverse pharmacological effects. Telbivudine was administered to conscious telemeterized male cynomolgus monkeys (4 males/group) on four separate occasions (4 by 4 Latin Square design) at doses of 0, 250, 750, or 2000 mg/kg by oral gavage to evaluate the effects on the function of respiratory and cardiovascular systems. In the CNS safety study, single doses of 0, 150, 500 and 1000 mg/kg of telbivudine were orally administered to 8 rats/sex/group.

The cardiac hERG (human ether-à-go-go-related gene) channel is a potassium channel responsible for rapid delayed rectifier outward currents (I_{Kr}). Inhibition of I_{Kr} is the most common cause of cardiac action potential prolongation by non-cardiac drugs, leading to prolongation of the QT interval and an associated ventricular arrhythmia.
disorder, *torsade de pointes*. The effect of telbivudine on the hERG current was determined at concentrations of 10, 100, 1000, and 10,000 µM in human embryonic kidney cells (HEK293) stably transfected with a human ERG gene (3-4 cells/group).

Acute Toxicity Studies. Four groups of 5 rats/sex/group were orally administered with a single dose of vehicle (0), or telbivudine at 500, 1000, or 2000 mg/kg. One group of 2 monkeys/sex received a starting dose of 20 mg/kg of telbivudine. As no overt toxicity was observed, the monkeys received escalating doses of 100, 500, 1000, and finally 2000 mg/kg with a washout period of 3 to 4 days between doses. Rats were observed for 14 days whereas monkeys were observed for 3 days following the last dose administration. Acute toxicity was evaluated based on clinical observations, body weights, clinical pathology, and macroscopic pathology.

Repeat-Dose Toxicity Studies. The multiple dose nonclinical safety studies conducted in support of the telbivudine program are listed in Table 1. Telbivudine was administered by oral gavage to mice for 28 days or 13 weeks at doses up to 3000 mg/kg/day; to rats and monkeys for 28 days, 3, 6 (rats only), or 9 (monkeys only) months at doses up to 2000 mg/kg/day. Repeat dose toxicity was evaluated based on mortality; clinical observations; body weights; food consumption; ophthalmology; clinical pathology including hematology, coagulation, and chemistry; and/or macroscopic and microscopic pathology. ECG and vital signs such as blood pressure, heart rates, body temperature were also collected from monkey studies for toxicity assessment.

Reproductive and Developmental Toxicity Studies. Five studies were conducted to evaluate the effects of telbivudine on the fertility in male and female rats;
the embryo-fetal development in female rats and New Zealand White rabbits; and the multiple generation development in male and female rats (Table 2).

In a combined rat fertility and embryo-fetal development study (combined Segment I and II), male rats (25 animals/group) were orally administered with telbivudine at doses of 0, 100, 500, or 1000 mg/kg/day starting 28 days prior to cohabitation through the day before the completion of cohabitation. Female rats (25 animals/group) were dosed starting 15 days prior to cohabitation through gestation Day 17. Male rats were sacrificed at the completion of cohabitation whereas females were sacrificed on gestation Day 21.

In a follow-up male fertility study (Segment I), male rats (25-26 animals/group) were dosed with telbivudine at doses of 0, 1000, or 2000 mg/kg/day starting 28 days prior to cohabitation through the day before the completion of cohabitation. Male rats were sacrificed at the completion of cohabitation whereas un-treated cohabitated females were sacrificed on gestation Day 13. In another follow-up female fertility study (Segment I), female rats (25 animals/group) were dosed with telbivudine at doses of 0 or 2000 mg/kg/day starting 15 days prior to cohabitation through gestation Day 7. Females were sacrificed on gestation Day 13 whereas un-treated cohabitated male rats were sacrificed at the completion of cohabitation.

Male fertility toxicity was evaluated based on mating and impregnating rates; sperm counts, mobility, and morphology; and microscopic examinations of testes and epididymis. Female fertility was evaluated based on estrous cycling, mating and pregnancy rates, number of corpora lutea, number and distribution of implantation sites, early resorptions, and microscopic examination of ovaries. Fetotoxicity and teratologic
potential were evaluated based on mid and late resorptions, the number of live and dead fetuses, external sex, body weights, gross external alterations and microscopic internal alterations such as major malformations, minor external and visceral or skeletal anomalies, or common skeletal variants.

In an embryo-fetal development study (Segment II) in female New Zealand White rabbits, four groups of 20 artificially-inseminated New Zealand hybrid rabbits were orally administered with telbivudine at doses of 0, 50, 250, or 1000 mg/kg/day on Day 6 through Day 18 post-insemination. The does were caesarean-sectioned on Day 29 post-insemination. The number of corpora lutea, implantation sites, early and late resorptions, and live and dead fetuses was recorded. Fetuses were examined for external sex, body weights, gross external alterations, and microscopic internal alterations. Pregnancy rates, pre- and post-implantation losses were calculated.

In a multiple generation development study (Segment III) in male and female rats, telbivudine was administered by oral gavage at doses of 0, 100, 250, or 1000 mg/kg/day to female CD rats (25 animals/group) on gestation Day 7 through Postpartum Day (PD) 20. Females were allowed to deliver and maintain their progeny until PD 21. On PD 21, dams were sacrificed and implantation sites were counted. Pups not scheduled for continued evaluation were sacrificed on PD 21 and examined for gross lesions and microscopic changes on selected tissues. From the surviving pups, one rat/sex/group of the first offspring (F₁) was evaluated for passive avoidance tests for learning, short-term and long-term retention starting from PD 24 ± 1. Females were examined for the age of vaginal patency starting from PD 28. Males were examined for the age of preputial separation starting from PD 39. On approximately PD 70, one rat/sex/litter/group was
evaluated in a water-filled M-maze for overt coordination, swimming ability, learning and memory. At the age of 90 days, one rat/sex/group was cohabitated for a maximum of 21 days. Once females were observed to have spermatozoa in their vaginal smear or a copulatory plug, they were housed independently. F₁ males were sacrificed at the end of cohabitation and the testes and epididymides were weighed. F₁ females were sacrificed on gestation Day 21 and evaluated in like manner to the F₀ females.

Genetic Toxicology Studies. Three in vitro assays and one in vivo test were performed to assess the genotoxic potential for telbivudine. Reverse mutation potential was assayed with Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and Escherichia coli strain WP2uvrA. The mutagenic potential was tested in the in vitro chromosomal aberration assays in Chinese hamster ovary cells and in human peripheral blood lymphocytes. The in vitro assays were performed at concentrations up to 5000 µg/plate (bacterial mutation), 2442 µg/mL (human peripheral blood lymphocytes), or 5000 µg/mL (Chinese hamster ovary cells) with or without metabolic activation (S9). An in vivo micronucleus test was performed in CD-1 mice given single oral doses of 0, 500, 1000, or 2000 mg/kg. The numbers of micronuclei in bone marrow preparations obtained at 24 and 48 h post-dose were determined. For all in vitro assays and in vivo tests, telbivudine was prepared as a solution in dimethylsulfoxide and appropriate negative and positive controls were used.

Carcinogenicity Studies. The carcinogenic potential of telbivudine was tested in two bioassays. In a 6-month carcinogenicity study in CB6F1-Tg rasH2 mice, telbivudine was administered once daily by oral gavage to groups of 25 mice/sex/group at doses of 0, 500, 1000, or 2000 mg/kg/day. In addition, an additional group of 25 mice/sex received a
known carcinogen N-methyl-N-Nitrosourea (MNU) intraperitoneally at a dose of 75 mg/kg on Day 1 as positive control. In a traditional 2-year carcinogenicity study in Sprague-Dawley rats (Crl:CD®(SD)IGS BR), telbivudine was administered to groups of 65 rats/sex/group by oral gavage at doses of 0, 500, 1000, or 2000 mg/kg/day. As mortality reached 38% (25/65) in both male and female rats dosed at 2000 mg/kg/day at Week 85, dosing of this group discontinued after the completion of 85 weeks. The remaining animals continued to receive dosing until the completion of 95 weeks of dosing. Animals were sacrificed at Weeks 95 (Group 2 males), 96 (Groups 1, 3, and 4 males), and 97 (all females). Toxicity and carcinogenicity were evaluated based on survival, clinical observations including grossly visible and/or palpable masses, body weights, food consumption, clinical pathology, macroscopic and microscopic pathology.

Statistical Analyses. For continuous data such as body weights, food consumption, clinical pathology, and organ weights, Bartlett’s test or Levene’s test was used to test for variance homogeneity. In the case of heterogeneity of variance at p<0.05, rank transformation was used to stabilize the variance. One-way analysis of variance (ANOVA) was used to analyze data. When the result was significant (p<0.05), Dunnett’s test was used for comparisons between dosed and control groups. Group comparisons (dosed groups versus control group) were evaluated at the 5.0%, two-tailed probability level.

For data that exhibited heterogeneity after transformations, Kruskal-Wallis test was applied. If the result was significant, a non-parametric Dunn’s test was employed for comparisons between dosed and control groups.
Histopathology data were analyzed for incidence of neoplastic and non-neoplastic lesions using Fisher’s exact test to compare dosed groups and positive control group versus the vehicle control group. The incidence of common background findings was compared with controls and published values across different laboratories (26).

RESULTS

Safety Pharmacology Studies. Telbivudine had no effects on the respiratory and cardiovascular function as observed in the monkey study following the administration of single doses up to 2000 mg/kg and on the central nervous system function in the rat study following the administration of single doses up to 1000 mg/kg. Results from the hERG assay showed that hERG currents were not affected by telbivudine at concentrations up to 10,000 µM in HEK293 cells stably transfected with a human ERG gene.

Acute Toxicity Studies. No test article-related changes in clinical signs, body weights, clinical pathology, organ weights, or macroscopic pathology in rats following a single oral administration of 2000 mg/kg/day. In the monkey, telbivudine was well tolerated following the administration of escalating doses up to 2000 mg/kg/day. No overt toxicity or adverse effects were observed.

Repeat-Dose Toxicity Studies. In the 13-week repeat dose toxicity study in mice, there was no evidence for systemic toxicity from telbivudine at any dose tested. Four mice (one male dosed at 1000 mg/kg/day, plus two males and one female dosed at 3000 mg/kg/day) were found dead on study Days 88 and 89. The lungs of these mice were congested, suggesting possible aspiration of test article. Mean body weights were occasionally higher in females of all dosed groups and in males of mid- and high-dose groups. However, there was no statistical correlate between body weight and food
consumption. The mean absolute liver weight in the females dosed at 1000 mg/kg/day was higher than in controls, but mean weights relative to body or brain weight were not different from controls. Microscopic findings were consistent with changes common to Crl:CD-1® (ICR)BR mice of 21 weeks of age. The No-Observed-Adverse-Effect Level (NOAEL) was reported to be 3000 mg/kg/day.

In the 28-day repeat dose toxicity study in mice, statistically significant increases in leukocyte and lymphocyte counts were observed in males given 2000 mg/kg/day. Slight but statistically significant increases in red blood cell counts, hemoglobin concentrations, and hematocrit values were observed in females given 2000 mg/kg/day. These changes were not considered to be test article-related. Moreover, they were not observed in the 13-week study either.

In the 6-month repeat dose toxicity study with 3-month interim sacrifice in rats, six rats in total were found dead (one control male, two males at 500 mg/kg/day, and two females at 1000 mg/kg/day) or sacrificed for humane reasons (one male at 1000 mg/kg/day). Except for one male dosed at 500 mg/kg/day that was found dead on Day 161 and whose cause of death was undetermined, the cause of death for the remaining four rats was considered to be gavage-related. The male dosed at 1000 mg/kg/day that was sacrificed for humane reasons on study Day 133 was diagnosed with widespread lymphoma, a common spontaneous tumor. None of these deaths was attributed to telbivudine. Treatment had no adverse effects on food consumption, but some dosed rats had intervals of increased food intake. This transient increased appetite was not considered evidence for toxicity from telbivudine. Ophthalmic examinations of rats in all dose groups did not identify any treatment-related changes except for some
age-related changes. Hematology data did not indicate toxicity from telbivudine after 92
days (3 months), 176 days (6 months) or 204 days (1-month recovery). There were no
conclusive findings from the clinical chemistry data to indicate evidence for toxicity at
any interval. Mean absolute and relative organ weights were somewhat variable but
failed to demonstrate a clear pattern for toxicity from telbivudine. No macroscopic or
microscopic morphologic changes were associated with telbivudine exposure. The
NOAEL was reported to be 1000 mg/kg/day.

In the 28-day repeat dose toxicity study in rats, males dosed at 1000 and
2000 mg/kg/day consumed more food at select intervals, but these increases were not
judged to represent toxic effects. A statistically significant decrease in mean absolute
neutrophil counts was observed in males given 2000 mg/kg/day. However, this finding
was not considered to be of biological significance as the individual values were still
within the normal range of the testing facility for this parameter. The relationship of
telbivudine to higher adrenal weights in some female rats was inconclusive. Both the
macroscopic and microscopic pathology examinations were unremarkable.

In the 9-month repeat dose toxicity study in monkeys with 3-month interim
sacrifice, female monkeys dosed with telbivudine tended to experience soft stools and
emesis more often than control females in a general dose-related manner. However,
similar findings in males failed to indicate a role for telbivudine as controls were equally
affected. Soft stools seemed to diminish during the recovery phase. After 3 months of
treatment, a lower mean serum alkaline phosphatase (ALP) level was seen in males dosed
at 250 or 1000 mg/kg/day, primarily attributable to several high values in control males.
At 9 months, mean serum aspartate aminotransferase (AST) was higher and ALP was lower in all treated male monkeys; likely due to artifacts in control values.

Minimal to mild degeneration was observed in the sciatic nerve sections from 2 high-dose female monkeys at the 3-month interim sacrifice and in one high-dose female monkey at the 9-month necropsy. Tissue sections of the sciatic nerves and the cervical, thoracic, and lumbar spinal cords of all animals were examined by a second study pathologist and an independent peer review neuropathologist. The degenerative changes were consistent with axonopathy given the formation of digestion chambers with macrophages and axonal spheroid formation. Compared with the controls, axonopathy appeared to be more frequently observed in the sciatic nerves from females and in the spinal cords from males dosed at 1000 mg/kg/day (Table 3). The axonopathic changes noted in the sciatic nerves were consistent with nerve fibers undergoing Wallerian degenerative change. Perineuritis, epineuritis, and/or myodegeneration were occasionally noted in the study, but with no relationship to dose group. A scar characterized by perineural disruption and focal fibrosis was noted by the pathologists in one monkey. These findings indicated that at least some of the axonopathic changes might have been secondary to local nerve trauma rather than test article-related. However, the increase in incidence of axonopathic changes in the sciatic nerves of high-dose female monkeys was confounding. After a thorough re-examination and careful evaluation, it was concluded that the role of telbivudine in the pathogenesis of the axonopathic changes was equivocal.

Using a conservative approach, the NOAEL was considered to be 500 mg/kg/day.

In the 28-day repeat dose toxicity study in monkeys, emesis was noted in 8 monkeys at 16 instances, mostly in telbivudine-dosed monkeys. There was a high
incidence of soft feces across all dose groups including controls and this finding was
more pronounced in the 2000 mg/kg/day dose group.

Developmental and Reproductive Toxicity Studies.

Male and Female Fertility: In the combined segment I and II study in rats, there
were no test article-related changes in male or female fertility following the
administration of telbivudine. However, pregnancy rate was 76% in rats dosed at
500 mg/kg/day and 72% in rats dosed at 1000 mg/kg/day, which were slightly lower
compared with the control group (92%) but still remained within the historical control
range of the testing facility. In order to confirm if the lower fertility was telbivudine-
related, two more fertility studies were conducted, one in males only and the other in
females only at doses up to 2000 mg/kg/day. The results from both studies confirmed
that telbivudine had no effects on the pregnancy rate or on the male and female fertility.

Embryo-Fetal Development: There were no changes in embryo-fetal
development following the administration of telbivudine in the combined segment I and
II study in rats and in the segment II study in rabbits. In the segment II study in rabbits,
one doe dosed at 1000 mg/kg/day aborted on Day 28 post-insemination and two does
dosed at 1000 mg/kg/day delivered prematurely on GD 29. Signs of maternal toxicity
included reduced body weight gain, reduced food consumption, and abnormal feces at
1000 mg/kg/day.

Multiple Generation Development: In the multiple generation development study
in rats, telbivudine did not produce any adverse effects at doses up to 1000 mg/kg/day.
All pregnant dams (F₀) delivered litters without evidence of dystocia. There were no
telbivudine-related clinical observations or pathology findings. There were no
telbivudine-related findings in behavior, sexual maturation, or fertility in the F₁ offspring. Furthermore, *in utero* examination findings were normal in second generation offspring (F₂). The NOAEL was reported to be 1000 mg/kg/day for the dams and the fetuses of both F₁ and F₂.

Genetic Toxicology Studies. A standard battery of genotoxicity testing evaluated the potential effects of telbivudine. The microbial mutagenesis assay was negative in all five bacterial strains tested at doses up to 5000 µg/plate. In two *in vitro* chromosomal aberration assays with cultured Chinese hamster ovary (CHO) cells (up to 5000 µg/mL), and with cultured human peripheral blood lymphocytes (up to 2422 µg/mL), telbivudine showed no evidence of clastogenicity. In addition, no evidence of chromosome damage occurred in a mouse micronucleus test following single oral doses up to 2000 mg/kg.

Carcinogenicity Studies. In the 6-month carcinogenicity study in Tg rasH₂ mice, survival rates were 92% for males and 80% for females in the vehicle control group, 20% for males and 36% for females in the positive control group, and 92% to 100% in the telbivudine-dosed groups. Neoplasms observed in N-methyl-N-nitrosourea (MNU)-dosed mice included hemic-lymphatic lymphosarcoma, squamous cell carcinoma and sarcoma of the skin, pulmonary alveolar/bronchial adenoma, splenic hemangiosarcoma, squamous cell carcinoma of the forestomach, and intestinal adenoma/adenocarcinoma, indicating the validity of this carcinogenic animal model. Neoplasms observed in the 2000 mg/kg/day dose group included thymic lymphosarcoma in one male, hepatocellular adenoma in one male, pulmonary alveolar/bronchial adenoma in one male, papilloma in the forestomach in one male, and splenic hemangiosarcoma in...
one male and one female. The incidences of these neoplasms were within historical control ranges of the testing facility for this transgenic strain and were not significantly different from concurrent controls. Thus, daily oral administration of telbivudine at doses up to 2000 mg/kg/day for 26 weeks did not result in macroscopic or microscopic neoplastic or non-neoplastic changes in Tg rasH2 CB6F1 mice.

In the traditional 2-year carcinogenicity study in Sprague-Dawley rats, survival rates were 38% (25/65 rats) in males and females dosed at 2000 mg/kg/day at Week 85 (Table 4). Survival rates ranged from 42% to 55% in other groups. Pituitary adenomas in males and females and mammary carcinomas and fibroadenomas in females were the tumors that were identified as the most frequent causes of deaths (Table 4). These tumors were present in all test groups, including controls and there was no evidence for increased tumor-related mortality in the telbivudine-dosed rats (Table 5).

There were no statistically significant trends in the incidence of neoplasms. However, the incidence of acinar cell adenoma of the pancreas was slightly increased in males dosed at 2000 mg/kg/day (Table 5). In the females, slightly increased incidences of benign pheochromocytoma of the adrenal medulla and fibroadenoma of the mammary gland were observed at 2000 mg/kg/day (Table 5). Since the incidence of these common tumors was within the historical range for Sprague-Dawley rats and there were no statistically significant trends, these increases were not considered telbivudine-related.

Additionally, there were no statistically significant trends noted in the analysis of the incidence of non-neoplastic lesions in the rat. Chronic progressive nephropathy (CPN) was observed in almost all animals including controls. The incidence was not different from controls. There was a slightly higher incidence of nephropathy-related
deaths in the male rats dosed at 1000 and 2000 mg/kg/day and in the female rats dosed at 2000 mg/kg/day compared to concurrent male and female controls, suggesting that telbivudine might exacerbate this age-related disease. However, there was no evidence for an increased severity of nephropathy based on mean severity scores/group, nor an increased overall incidence of nephropathy in any treated group. Because CPN is a rodent-specific disease, the exacerbation of CPN by telbivudine can be regarded as having no relevance for extrapolation in human risk assessment.

Steady State Exposure and Animal-to-Human Exposure Multiples: The steady state exposure to telbivudine at NOAEL and animal-to-human exposure multiples in rats, rabbits, and monkeys are presented in Table 6. Human steady state C_{max} (3.4 µg/mL) and AUC_{0-24} (27.5 µg·h/mL) were obtained from healthy subjects following 7 days of once daily oral administration of 600 mg/day of telbivudine, the approved dose for patients with chronic hepatitis B infection (31). In repeat dose toxicity studies, the steady state animal-to-human exposure multiple at NOAEL was 41, 11, and 6 times mean human C_{max} value and 22, 6, and 5 times mean human AUC_{0-24} value in mice, rats, and monkeys, respectively. In reproductive and developmental toxicity studies, the steady state animal-to-human exposure multiples at NOAEL were 11-15 times mean human C_{max} value and 6-14 times mean human AUC_{0-24} value in rats, 20 times mean human C_{max} value and 37 times mean human AUC_{0-24} value in rabbits.

DISCUSSION

Telbivudine had no safety pharmacology concerns in rats and monkeys as well as in *in vitro* hERG assay. No acute toxicity was observed in rats or monkeys following oral administration of single doses up to 2000 mg/kg/day.
In the repeat dose studies, except for equivocal axonopathic findings in monkeys and occasionally observed emesis, and minor changes in body weights and food consumption, no evidence of target organ toxicity was identified in mice, rats, and monkeys.

Telbivudine did not result in reproductive or developmental toxicity in rats or rabbits. Although slightly lower pregnancy rates were observed in the initial combined Segment I and II study in rats, this finding was proven to be not attributable to the administration of telbivudine in the two subsequent confirmatory studies. The single abortion and two premature deliveries in rabbits dosed at 1000 mg/kg/day were more likely due to maternal toxicity i.e. reduced food consumption, reduced body weights, and abnormal feces. In fact, abortion and premature delivery are not uncommon in rabbits (7).

Telbivudine is non-genotoxic in a standard battery of genetic toxicity testing. The Tg rasH2 mouse has been developed as an alternate to the lifetime mouse bioassay to predict the carcinogenic potential of chemicals (13, 21, 28). The Tg rasH2 mouse is sensitive to both genotoxic and nongenotoxic carcinogens. The Tg rasH2 mouse model appears to be better predictor for human carcinogenicity than the conventional mouse bioassay because it detects known or suspected human carcinogens at least as well as the conventional mouse bioassay and produces fewer positive results that are irrelevant to human carcinogenesis. These mice develop spontaneous and chemically induced neoplasms earlier in life and in greater numbers than wild-type mice. The most common spontaneous neoplasms in control Tg rasH2 mice 8-9 months of age are lung adenoma and carcinoma (7.4% incidence), splenic hemangiomas and hemangiosarcomas (5.4%).
forestomach squamous cell papillomas and carcinomas (2.4%), and skin neoplasms (1.2%) (21, 26).

Telbivudine was not carcinogenic at doses up to 2000 mg/kg/day for 6 months in this transgenic mouse bioassay or in the 2-year conventional carcinogenicity study at doses up to 2000 mg/kg/day. In spite of the premature termination of this 2-year study, as at least 50% of survival rates were observed at Week 78 in male and female animals of each group, carcinogenicity could be adequately assessed.

In the 2-year conventional carcinogenicity study, telbivudine appeared to be related to the death of a few rats due to advanced CPN. However, there was no evidence for an increased severity of nephropathy based on mean severity scores/group, nor an increased overall incidence of nephropathy in any treated group.

CPN is a common, age-related renal disease affecting all conventional strains of rat used in safety evaluation studies, and in particularly, the most commonly used Fischer 344 and Sprague-Dawley strains (10, 11, 20, 23). CPN occurs in both sexes of rat, but at higher incidence and with progressively greater severity in males than in females as seen in the 2-year carcinogenicity study. A number of factors, mainly dietary manipulations, have been shown to modify the expression of CPN. Amongst these, restriction of caloric intake is the most effective for inhibiting the disease process. As rats had access to feed ad libitum during the study, this can explain why the high incidence of this disease was observed. Many chemicals are known to exacerbate the severity of CPN to an advanced stage. However, the exacerbation of CPN by telbivudine can be regarded as having no relevance for extrapolation in human risk assessment because CPN is a rodent-specific disease (11).
In conclusion, comprehensive nonclinical safety studies were conducted at many multiples of the human exposure at 600 mg/day telbivudine. These studies demonstrated that telbivudine had no evidence of significant adverse effects in both \textit{in vitro} and \textit{in vivo} studies that evaluated safety pharmacology, acute and chronic toxicity, reproductive and developmental toxicity, genotoxicity, and carcinogenicity, demonstrating a favorable safety profile of telbivudine.

\textbf{ACKNOWLEDGMENTS}

We would like to thank the staff of Charles River Laboratories, Covance Laboratories Inc, and SNBL USA Ltd for the excellent work they have accomplished and Dr. Valérie Philippon for help in preparing the manuscript.
REFERENCES

Table 1: Repeat Dose Oral Toxicity Studies with Telbivudine in Mice, Rats, and Monkeys

<table>
<thead>
<tr>
<th>Study Type and Duration</th>
<th>Species</th>
<th>Dose (mg/kg/day)</th>
<th>Animals Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-week toxicity with toxicokinetics</td>
<td>Mouse CB6F1/Crl: BR</td>
<td>0, 500, 1000, 2000</td>
<td>10/sex/group</td>
</tr>
<tr>
<td>13-week toxicity with toxicokinetics</td>
<td>Mouse Crl:CD-1® (ICR) BR</td>
<td>0, 500, 1000, 3000</td>
<td>10/sex/group</td>
</tr>
<tr>
<td>28-day toxicity with toxicokinetics</td>
<td>Rat Crl:CD® (SD) BR</td>
<td>0, 500, 1000, 2000</td>
<td>10/sex/group</td>
</tr>
<tr>
<td>6-month toxicity with 3-month interim sacrifice</td>
<td>Rat Crl:CD® (SD) BR</td>
<td>0, 250, 500, 1000</td>
<td>10/sex/groupa</td>
</tr>
<tr>
<td>28-day toxicity with toxicokinetics</td>
<td>Monkey Cynomolgus</td>
<td>0, 500, 1000, 2000</td>
<td>10/sex/group</td>
</tr>
<tr>
<td>9-month toxicity with 3-month interim sacrifice</td>
<td>Monkey Cynomolgus</td>
<td>0, 250, 500, 1000</td>
<td>3-4/sex/groupb,c</td>
</tr>
</tbody>
</table>

a An additional 5 rats/sex were assigned to control and high-dose groups to serve as a one-month recovery subgroup.

b 3 monkeys/sex/group were scheduled to be sacrificed following 3 months of dosing and 4 monkeys/sex/group were sacrificed following 9 months of dosing.

c An additional 2 monkeys/sex were assigned to control and high-dose groups to serve as a 2-month recovery subgroup.
Table 2: Reproductive and Developmental Toxicity Studies with Telbivudine in Rats and Rabbits

<table>
<thead>
<tr>
<th>Study Type and Duration</th>
<th>Species</th>
<th>Dose (mg/kg/day)</th>
<th>Animals Assignment</th>
<th>Dosing Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertility, early embryonic development, embryo-fetal developmental (Segment I and II)</td>
<td>Rat Cr:CD® (SD) IGS BR</td>
<td>0, 100, 500, 1000</td>
<td>25/sex/group</td>
<td>Males: 28 days prior to cohabitation through the day before completion of cohabitation. Females: 17 days prior to cohabitation through gestation day 17.</td>
</tr>
<tr>
<td>Fertility, male (Segment I)</td>
<td>Rat Cr:CD® (SD) IGS BR</td>
<td>0, 1000, 2000</td>
<td>25-26/group</td>
<td>Males: 28 days prior to cohabitation through the day before completion of cohabitation.</td>
</tr>
<tr>
<td>Fertility, female (Segment I)</td>
<td>Rat Cr:CD® (SD) IGS BR</td>
<td>0, 2000</td>
<td>25/sex/group</td>
<td>Females: 17 days prior to cohabitation through gestation day 7.</td>
</tr>
<tr>
<td>Embryo-fetal development (Segment II)</td>
<td>Rabbit Hra (NZW) SPF</td>
<td>0, 50, 250, 1000</td>
<td>20 females/group</td>
<td>Gestation days 6 through 18</td>
</tr>
<tr>
<td>Multiple generation development (Segment III)</td>
<td>Rat Cr:CD® (SD) IGS BR</td>
<td>0, 100, 250, 1000</td>
<td>25 females/group</td>
<td>Gestation day 7 through postpartum day 20</td>
</tr>
</tbody>
</table>

* a. Males and females were cohabitated (1:1) for a maximal period of 21 days. Females not mated within the first 14 days of cohabitation were assigned an alternate male rat from the same dose group that had mated and remained in cohabitation for a maximum of seven additional days. Likewise, males not mated within the first 14 days of cohabitation were assigned an alternate female rat and remained in cohabitation for a maximum of three additional days.

* b. 25-26 females/group were used for mating only

* c. 25 males/group were used for mating only
Table 3: Incidence of Axonopathy in the Sciatic Nerve and Spinal Cord in Monkeys Following Once Daily Oral Administration for 9 Months

<table>
<thead>
<tr>
<th>Site</th>
<th>Interval</th>
<th>Dose in Males (mg/kg/day)</th>
<th>Dose in Females (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Sciatic Nerve</td>
<td>3 month</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>9 month</td>
<td>G1 = 1/4</td>
<td>G1 = 2/4</td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
<td>0/2</td>
<td>NA</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>3 month</td>
<td>0/3</td>
<td>G1 = 2/3</td>
</tr>
<tr>
<td></td>
<td>9 month</td>
<td>0/4</td>
<td>G1 = 1/4</td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
<td>0/2</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: NA = not applicable; G1 = grade 1, minimal, one fiber was affected in the tissue sections examined; G2 = grade 2, mild, 2-4 fibers were affected in the tissue sections examined.
Table 4: Survival Rates and Potential Causes of Deaths Identified by Study Pathologist in a Two-Year Carcinogenicity Study in Sprague-Dawley Rats

<table>
<thead>
<tr>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg/kg/day)(^a)</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>Survival Rate at Week 78</td>
<td>65%</td>
<td>52%</td>
</tr>
<tr>
<td>Survival Rate at Week 85</td>
<td>55%</td>
<td>42%</td>
</tr>
<tr>
<td>Survival Rate at End of Study(^b)</td>
<td>38%</td>
<td>25%</td>
</tr>
<tr>
<td>Total Unscheduled Deaths</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>Undetermined</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Gavage-related</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Trauma / Accidental</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Chronic Progressive Nephropathy (CPN)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Granulocytic Leukemia</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Mammary Carcinona</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mammary Fibroadenoma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urinary Tract, Hemorrhage / necrosis / inflammation</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Endometrial Stromal Sarcoma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Histiocytic Sarcoma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibrosarcoma</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All others(^c)</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^a\) Animals were dosed for 95 weeks for Groups 1, 2, and 3 and for 85 weeks for Group 4.

\(^b\) Animals were sacrificed at Weeks 95 (Group 2 males), 96 (Groups 1, 3, and 4 males), and 97 (all females).

\(^c\) The incidence of each individual cause was ≤ 1/sex/group.
Table 5: Incidence of Selected Tumors and Chronic Progressive Nephropathy (CPN) in a Two-Year Carcinogenicity Study in Sprague-Dawley Rats

<table>
<thead>
<tr>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg/kg/day)</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>41/65</td>
<td>32/65</td>
</tr>
<tr>
<td>Adrenal Pheochromocytoma</td>
<td>6/65</td>
<td>3/65</td>
</tr>
<tr>
<td>Pancreatic Acinar Cell Adenoma</td>
<td>0/65</td>
<td>3/64</td>
</tr>
<tr>
<td>Mammary Fibroadenoma</td>
<td>0/65</td>
<td>0/65</td>
</tr>
<tr>
<td>Mammary Carcinoma</td>
<td>0/65</td>
<td>0/65</td>
</tr>
<tr>
<td>CPN</td>
<td>63/65</td>
<td>64/65</td>
</tr>
<tr>
<td>Mean Severity</td>
<td>2.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a, Animals were dosed for 95 weeks for Groups 1, 2, and 3 and for 85 weeks for Group 4.
b, Grades for severity: 1 = minimal, the least amount of change observed with the light microscope; 2 = slight, less than average amount of change, but readily discernible as abnormal; 3 = moderate, the average amount of change expected for a lesion; 4 = marked, a marked amount of change with possible loss of function of the affected cells or organs; 5 = severe, a great amount of change with probable loss of function of the affected cells or organs and frequently involving large areas of the organ.
Table 6: Steady State Exposure to Telbivudine at NOAEL and Animal-to-Human Exposure Multiples in Rats, Rabbits, and Monkeys

<table>
<thead>
<tr>
<th>Study Description</th>
<th>NOAEL (mg/kg/day)</th>
<th>C<sub>max</sub> (µg/mL)<sup>a</sup></th>
<th>Multiple<sup>b</sup></th>
<th>AUC<sub>0-24</sub> (µg·h/mL)<sup>a</sup></th>
<th>Multiple<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>13-week toxicity in mice with toxicokinetics</td>
<td>3000</td>
<td>141</td>
<td>41</td>
<td>595</td>
<td>22</td>
</tr>
<tr>
<td>6-month toxicity in rats with 3-month interim sacrifice</td>
<td>1000</td>
<td>35.8</td>
<td>11</td>
<td>169</td>
<td>6</td>
</tr>
<tr>
<td>9-month toxicity in monkeys with 3-month interim sacrifice</td>
<td>500</td>
<td>21.1</td>
<td>6</td>
<td>126.5</td>
<td>5</td>
</tr>
<tr>
<td>Fertility, early embryonic development, and embryo-fetal development in male and female rats (Segment I and II)</td>
<td>1000</td>
<td>35.8</td>
<td>11</td>
<td>169</td>
<td>6</td>
</tr>
<tr>
<td>Fertility in male rats (Segment I)</td>
<td>2000</td>
<td>50.5</td>
<td>15</td>
<td>398</td>
<td>14</td>
</tr>
<tr>
<td>Fertility in female rats (Segment I)</td>
<td>2000</td>
<td>50.5</td>
<td>15</td>
<td>398</td>
<td>14</td>
</tr>
<tr>
<td>Embryo-fetal development in rabbits (Segment II)</td>
<td>1000</td>
<td>66.4</td>
<td>20</td>
<td>1023</td>
<td>37</td>
</tr>
<tr>
<td>Multiple generation development study in rats (Segment III)</td>
<td>1000</td>
<td>35.8</td>
<td>11</td>
<td>169</td>
<td>6</td>
</tr>
</tbody>
</table>

a. Animal steady state C_{max} and AUC₀₋₂₄ values were the average of mean male and female data.

b. Human steady-state C_{max} (3.4 µg/mL) and AUC₀₋₂₄ (27.5 µg·h/mL) were obtained from healthy subjects following 7 days of once daily oral administration of 600 mg of telbivudine (31), the approved therapeutic dose for patients with chronic hepatitis B infection.
Figure 1: Structure of Telbivudine

See graphic file