In vitro activity of a novel nanoemulsion against *Burkholderia* and other multi-drug resistant cystic fibrosis-associated bacterial species

John J. LiPuma,1,2* Paul E. Makidon,2,3 Bridget K. Foster,1 Jordan C. Keoleian,1
Sivaprakash Rathinavelu,2 Linda M. Kalikin,1 and James R. Baker, Jr.2

Department of Pediatrics and Communicable Diseases,1 Michigan Nanotechnology Institute for Medicine and the Biological Sciences,2 and Unit for Laboratory Animal Medicine,3 University of Michigan, Ann Arbor, Michigan

Running title: Nanoemulsion activity against CF related bacteria

Abstract word count: 209

* Corresponding author. Mailing address: 1150 W. Medical Center Dr, 8323 MSRB III, SPC 5646, Ann Arbor, MI 48109. Phone: (734) 615-5909. Fax: (734) 764-4279. E-mail: jlipuma@umich.edu
[ABSTRACT]

Respiratory tract infection, most often involving opportunistic bacterial species with broad-spectrum antibiotic resistance, is the primary cause of death in persons with cystic fibrosis (CF). Species within the *Burkholderia cepacia* complex are especially problematic in this patient population. We investigated the activity of a novel surfactant-stabilized oil-in-water nanoemulsion (NB-401) for activity against 150 bacterial isolates, primarily recovered from CF respiratory tract specimens. These included 75 *Burkholderia* isolates and 75 isolates belonging to other CF-relevant species including *Pseudomonas, Achromobacter, Pandoraea, Ralstonia, Stenotrophomonas* and *Acinetobacter*. Nearly one-third of the isolates were multi-drug resistant and 20 (13%) were pan-resistant based on standard antibiotic testing. All isolates belonging to the same species were genotyped to assure that each was a distinct strain. The MIC\textsubscript{90} of NB-401 was 125 µg/ml. We found no decrease in activity against multi-drug resistant or pan-resistant strains. MBC testing showed no evidence of tolerance to NB-401. We investigated the activity of NB-401 against a subset of strains grown as biofilm and against planktonic strains in the presence of CF sputum. Although the activity of NB-401 was decreased in both conditions, the nanoemulsion remained bactericidal for all strains tested. These results support NB-401’s potential role as a novel antimicrobial agent for the treatment of infection due to CF-related opportunistic pathogens.
INTRODUCTION

For reasons that are not well understood, persons with cystic fibrosis (CF) are prone to chronic infection of the respiratory tract, which ultimately leads to pulmonary failure, the primary cause of death in this patient population. Pathogenic bacterial species such as *Staphylococcus aureus* and *Haemophilus influenzae* are commonly involved in infection in young CF patients, while a growing number of opportunistic species causes infection in older individuals. Chief among these is *Pseudomonas aeruginosa*, which infects the majority of adults with CF. Several other species, although less frequently recovered in CF, are particularly problematic due to their multi-drug resistant phenotypes. These include *Achromobacter xylosoxidans* and *Stenotrophomonas maltophilia* as well as several *Ralstonia* and *Pandoraea* species. The frequency of respiratory tract infection by these species increases with patient age, posing a significant health risk to the growing number of CF patients surviving to adulthood.

Species of the *Burkholderia cepacia* complex are especially troublesome in CF where they are associated with increased rates of morbidity and mortality (35). *Burkholderia* are also among the most antimicrobial-resistant bacterial species encountered in human infection. Numerous reports document the survival of *Burkholderia* in antiseptic solutions, including alcohol, chlorhexidine, benzalkonium chloride, and povidone-iodine, and in disinfectants such as quaternary ammonium compounds (61). Antimicrobial therapy of human infection due to *Burkholderia* is severely limited by constitutive and inducible broad-spectrum resistance that is exhibited by most strains (33, 38, 47). Most *Burkholderia* also appear to be capable of biofilm formation, which likely also impedes antimicrobial therapy in infected patients (9,
Finally, treatment of respiratory tract infection in CF is complicated by the presence of infecting organisms in highly viscous sputum, which presents a barrier to antibiotic delivery. Clearly, there is a need for new antimicrobial agents that may be effective in treating infection due to *Burkholderia* and other multi-resistant bacterial species in persons with CF.

Nanoemulsions are water-in-vegetable oil formulations produced by mixing the water-immiscible liquid phase into an aqueous phase by high stress mechanical extrusion (2). A novel non-ionic surfactant nanoemulsion comprised of tributyl phosphate, soybean oil, and Triton X-100 emulsified in water was previously shown to have broad range antimicrobial activity (25). This included bactericidal activity against *H. influenzae*, *Bacillus cereus*, *Neisseria gonorrhoeae*, *Streptococcus pneumoniae*, and *Vibrio cholerae*, as well as viricidal activity against *Herpes simplex*, influenza A, and vaccinia viruses. This compound also demonstrated sporicidal activity against *Bacillus* species and remarkably low toxicity in experimental animals (24, 25). Other nanoemulsions showed inhibitory activity against *Candida parapsilosis* and clinically important filamentous fungi including *Microsporum* spp., *Trichophyton mentagrophytes*, *Trichophyton rubrum*, *Aspergillus fumigatus*, *Fusarium oxysporum*, and *Epidermophyton floccosum* (43).

In the present study, we examined the in vitro activity of a novel nanoemulsion compound against a panel of multi-drug resistant bacterial isolates recovered from patients with CF. In addition to microtiter broth dilution MIC testing, we assessed nanoemulsion activity against a representative subset of strains grown as biofilm and against planktonic strains in the presence of CF sputum.
MATERIALS AND METHODS

Bacterial strains and culture conditions. One hundred fifty isolates were studied. These included 75 *Burkholderia* isolates and 75 isolates belonging to other CF-relevant species, including *P. aeruginosa*, *A. xylosoxidans*, *S. maltophilia*, *Acinetobacter* species, *Pandoraea* species (*P. apista*, *P. pnomenusa*, *P. pulmonicola*, *P. norimburgensis*, and *P. sputorum*), and *Ralstonia* species (*R. mannitolilytica* and *R. pickettii*). One hundred forty-five clinical isolates were obtained from the *Burkholderia cepacia* Research Laboratory and Repository (BcRLR, University of Michigan, Ann Arbor, MI). These were recovered from 142 individuals between September 1997 and October 2007 and were referred to the BcRLR for analysis from 62 CF treatment centers in the U.S. The remaining five strains included environmental isolates *B. multivorans* ATCC 17616 (American Type Culture Collection, Manassas, VA), *P. norimburgensis* LMG 18379\(^\text{T}\) (BCCM/LMG Bacteria Collection, Laboratorium voor Microbiologie Gent, Universiteit Gent, Ghent, Belgium) and *B. pyrrocinia* HI3642 (BcRLR collection), and the clinical type strains *B. cenocepa*cia LMG 16656\(^\text{T}\) (also referred to as J2315) (60) and *P. pulmonicola* LMG 18106\(^\text{T}\). Of the 147 clinical isolates, 134 (91%) were recovered from persons with CF; 114 (78%) were from sputum culture, with the remainder from throat swab (n=17), endotracheal suction / tracheal aspiration (n=5), blood (n=5), bronchial lavage (n=3), and one each from maxillary sinus, peritoneal cavity, and epiglottis. Forty nine (33%) of the 150 isolates were defined as multi-drug resistant (resistant to all drugs tested in two of three antibiotic classes: lactams including carbapenems, aminoglycosides, and quinolones (55)) based on susceptibility testing performed at the referring microbiology laboratory; 20 (41%) of these were panresistant.
Seventy two (48%) of the remaining isolates were susceptible to at least one antibiotic, and susceptibility testing results were unavailable for 29 (19%) isolates. All isolates were identified to the species level at the BcRLR by polyphasic analyses using phenotypic and genotypic assays as described previously (48). The exception was *Acinetobacter*, which was identified only to the genus level due to lack of definitive species-specific assays. All isolates were also subjected to repetitive extragenic element-PCR typing using the BOX A1R primer as previously described (15) to ensure that all 150 isolates were genotypically distinct. Bacteria were stored at -80°C in skim milk or Lauria-Bertani broth with 15% glycerol and recovered from frozen stock overnight at 37°C on Mueller-Hinton (MH) agar.

Nanoemulsion. Nanoemulsion NB-401 was supplied by NanoBio Corp. (Ann Arbor, MI) and was manufactured by emulsification of cetylpyridinium chloride (CPC), Poloxamer 407, and ethanol in water with super-refined soybean oil using a high speed emulsifier. The resultant droplets had a mean particle diameter of 400 nm. The surfactants and food substances used were ‘Generally Recognized as Safe’ (GRAS) by the FDA, and manufactured in accordance with Good Manufacturing Practices (GMP). The concentration of CPC was used as a surrogate for the amount of NB-401 used experimentally. NB-401 was stable for no less than 12 months at temperatures up to 40°C.

NB-401 activity against planktonic bacteria. The MICs of NB-401 were determined by using a modification of the Clinical and Laboratory Standards Institute (CLSI)-approved microtiter serial dilution method (14). NB-401 was diluted to a concentration of 2 mg/ml (of CPC) in Mueller Hinton (MH) broth supplemented with 7%
NaCl and 20 mM EDTA. Serial two-fold dilutions of this preparation were made in unsupplemented MH broth and aliquoted into 96-well flat bottom microtiter plates (100 µl/well). Bacteria from overnight growth on MH agar were suspended in MH broth to a 0.5 McFarland turbidity standard (absorbance of 0.08 – 0.13 at 625 nm), further diluted 1:100 in MH broth, and added (5 µl/well) to the NB-401 serial dilution wells. Appropriate controls, including wells with bacteria but no NB-401 and wells with NB-401 dilutions but no bacteria, were included on each plate. Microtiter plates were shaken briefly, and 1 µl was removed from wells containing bacteria but no NB-401, diluted in 1 ml of MH broth, plated on MH agar (100 µl), and incubated for 24-48 h at 37°C to confirm that initial inoculums were ≥ 10⁵ CFU. Microtiter plates were then incubated at 37°C without shaking. To determine MBCs, 10 µl were removed from each well after overnight growth, spread on MH agar, and incubated at 37°C. Colonies were enumerated 24 h later, and MBCs were recorded as the NB-401 concentrations with a 3 log decrease in CFU/ml compared to the initial inoculums. Because NB-401 is opaque, 10 µl of resazurin (R&D Systems, Minneapolis, MN) were added to each well and microtiter plates were shaken briefly, covered with foil, and incubated at 37°C without shaking. Resazurin, a non-fluorescing blue dye, is reduced in the presence of actively metabolizing cells to resorufin, a fluorescing pink dye. Therefore, MICs were recorded the next day as the lowest concentrations of NB-401 in which the wells remained blue. MIC results were further quantified by measuring the fluorescence generated by the reduction product resorufin on a spectrofluorometer at 560 nm excitation/590 nm emission. The change in metabolic activity for treated bacteria was calculated as (fluorescence of the visual MIC well – fluorescence of the well with the equivalent
concentration of NB-401 without bacteria) / (fluorescence of the well containing bacteria but no NB-401 – fluorescence to the well containing media only) x 100 (56).

NB-401 activity against bacteria grown in biofilm. To identify biofilm-forming isolates, bacteria were grown overnight in tryptic soy broth, adjusted to a 0.5 McFarland turbidity standard, and further diluted 1:10 in MH broth, and 100 µl were seeded in triplicate in internal wells of 96-well flat bottom microtiter plates. Negative control wells without bacteria were included. To minimize evaporation, the remaining wells were filled with MH broth, and the plate was covered with plastic wrap before incubating for 48 h at 37°C without shaking. Wells were gently washed twice with phosphate buffered saline (PBS; pH 7.4), dried for 2 h at 37°C, and then stained with 1% crystal violet in water for 15 min. Stained wells were washed 3 times with PBS, and crystal violet was eluted in absolute methanol. After incubation for 5 min at room temperature, the solubilized crystal violet was transferred to a new microtiter plate and scanned at 590 nm in a spectrophotometer. A biofilm-forming isolate was defined as one in which the average absorbance of the 3 wells was greater than the average absorbance of the negative control wells plus 3 standard deviations (53).

To test nanoemulsion activity against biofilm cultures, isolates shown to produce biofilm by crystal violet staining were grown in triplicate for 48h as described above. Wells were gently washed twice with PBS before addition of NB-401, serially diluted as described for planktonic MIC testing. After overnight incubation at 37°C, wells were again washed twice with PBS, and 100 µl of 10% resazurin in MH broth was added to wells. Plates were covered in plastic wrap, covered with foil, and again incubated overnight at 37°C without shaking. Plates were visually inspected the next day, and
minimum biofilm inhibitory concentrations (MBICs) were recorded as the lowest concentrations of NB-401 in which the wells remained blue. To calculate minimum biofilm eradication concentrations (MBECs), biofilm was resuspended in the same wells used for MBIC testing by shaking the microtiter plate and then scraping the sides of the wells with a pipet tip. Ten µL were removed from each well, spotted on MH agar plates and incubated at 37°C. After overnight growth, MBECs were recorded as the lowest NB-401 concentrations without colony growth (11). To confirm initial inoculum concentrations and to quantify viable bacteria in biofilm grown cultures, colonies were enumerated from 10-fold serial dilutions of the 0.5 McFarland inoculating culture and from the triplicate untreated positive control wells in which biofilm was resuspended by scraping for MBEC calculations.

NB-401 activity against bacteria in CF sputum. Expectorated sputum, collected from CF patients during the course of routine care, was obtained from the University of Michigan Health System clinical microbiology laboratory and stored at -80°C. Equal volumes of sputum from 15 individuals were pooled, mechanically sheared using a Tissue Miser homogenizer (Fisher Scientific, Pittsburg, PA) at room temperature for 5 min at maximum speed, and then incubated in an 80°C water bath for 20 min. Processed sputum was divided into 10 ml aliquots, and 100 µl from each aliquot was plated on MH agar and incubated for 48 h at 37°C to confirm sterility. Aliquots were stored at -80°C. To calculate MBCs in the presence of CF sputum (SMBCs), MBCs of NB-401 were determined as described above except that MH broth was replaced with the processed CF sputum preparation. The final concentration of CF sputum was 43%.
Time-kill analysis. Four replicate microtiter plates, each containing two-fold serial dilutions of NB-401 were prepared and inoculated with *B. multivorans* ATCC 17616 as described for planktonic testing. Negative control wells without bacteria were included on each plate. Plates were incubated 37°C, and 10-fold serial dilutions were plated in triplicate on MH agar after 30 min, 60 min, 90 min and 24 hrs. After a further 24 hrs incubation at 37°C, colonies were enumerated and recorded as the average CFU/ml.

RESULTS

NB-401 activity against planktonic bacteria. Due to the opaque white color of NB-401, the standard CLSI-approved microtiter serial dilution method was modified to include the addition of resazurin as an indicator of bacterial viability. NB-401 was tested in a concentration range of 15.6 - 2000 µg/ml. MICs were defined as the lowest concentrations of NB-401 that did not produce color changes from blue to pink (Fig. 1). Comparison of these visual inflection points with fluorometric analyses showed that, based on growth in untreated positive control wells, 63% of MIC wells had ≤1% metabolic activity, 91% had ≤ 5% metabolic activity, and 96% had ≤10% metabolic activity. The MIC results are shown in Table 1. All strains were inhibited by the concentrations of NB-401 tested. The MIC$_{50}$ for the entire panel of 150 strains was 31.2 µg/ml; the MIC$_{90}$ was 125 µg/ml. Thirty eight strains (25%) were inhibited by the lowest concentration of NB-401 tested (15.6 µg/ml), and only a single strain each required a concentration of 250 µg/ml and 500 µg/ml for inhibition. NB-401 was slightly more active against non-*Burkholderia* strains (MIC$_{50}$ 31.2 µg/ml; MIC$_{90}$ 62.5 µg/ml) than *Burkholderia* strains (MIC$_{50}$ 62.5 µg/ml; MIC$_{90}$ 125 µg/ml) (Fig. 2). Activity was
comparable across the 10 *Burkholderia* species tested. No difference was found in the activity of NB-401 against multi-drug resistant strains, strains susceptible to one or more antibiotics, or the subset of 29 strains without antibiotic susceptibility data (data not shown).

To evaluate the bactericidal activity of NB-401 against planktonic bacteria, MBCs were determined on a subset of 34 strains including 22 *Burkholderia* and 12 non-*Burkholderia*. All MBCs were within 1 dilution of the respective MICs for this subset of strains except for a single *B. cenocepacia* strain that had a MIC of 250 µg/ml and an MBC of 2000 µg/ml (data not shown). A time-kill study of *B. multivorans* ATCC 17616 showed time-and concentration-dependent killing, with a 99% decrease in bacterial viability within 90 min at a NB-401 concentration two times greater than the MIC and complete killing within 30 min at concentrations eight times greater than the MIC (Fig 3A).

NB-401 activity against bacteria grown in biofilm. To assess further the activity of NB-401, bacteria were grown as biofilms. Twelve biofilm-forming strains were identified from crystal violet staining of 25 strains from the test panel. The median increase in MBICs compared to the respective MICs of NB-401 for these strains was eight-fold. Nine (75%) of the 12 strains showed decreased susceptibility, defined as at least a four-fold increase in the MBIC compared to the MIC (Table 2). Similar to planktonic bacteria, biofilm bacteria did not exhibit evidence of tolerance to NB-401; MBECs were identical to their respective MBICs for 10 of the 12 strains.

NB-401 activity against bacteria in CF sputum. To model more closely the CF pulmonary microenvironment, the activity of NB-401 was tested against the 12 biofilm-
forming strains in the presence of CF sputum. Under planktonic conditions, the SMBCs
of NB-401 for all 12 strains increased in the presence of 43% sputum (the highest
sputum concentration achievable in the microtiter assay) compared to the respective
MBCs (Table 2). Nevertheless, NB-401 showed antibacterial activity against all strains
in the presence of sputum. MICs in the presence of sputum were not determined since
sputum was inherently fluorescent and masked the fluorescence emitted by the
reduction of resazurin. CF sputum inhibited the activity of NB-401 against planktonic
bacteria in a concentration dependent manner (Fig. 3B).

DISCUSSION

Although the bacterial species we included in this study are generally not virulent in
healthy persons, these opportunists can cause severe and chronic respiratory tract
infections in individuals with CF. Unremitting infection and the associated inflammation
results in progressive lung disease that culminates in pulmonary failure, the leading
cause of death for CF patients. Effective therapy of CF pulmonary infection is severely
limited by the broad spectrum antimicrobial resistance exhibited by these species, which
are among the most drug-resistant bacteria encountered in human infection. The site of
infection in CF presents another important obstacle to effective therapy. Infecting
bacteria primarily reside within the airway lumen in sputum, airway epithelial surface
fluid, and the bronchial mucosa (3, 37, 49, 58). The penetration of systemically
delivered antimicrobials to this infected site is generally poor. Treatment is further
hampered by bacterial biofilm formation, which is believed to occur in the airways of
infected patients (51), and by the exceptionally viscous secretions that characterize the
CF respiratory tract (40, 52). These challenges have driven an increase in recent efforts to develop antimicrobials for topical (i.e. inhalational) use in CF (8, 21, 27).

The surfactant-stabilized oil-in-water nanoemulsion we investigated in this study is similar to others that have previously been found to be bactericidal against gram-positive bacteria and spores, as well as some gram-negative bacilli and enveloped viruses (13, 24, 25, 42). The mechanism of bacterial and viral killing is believed to involve fusion of the emulsion with microorganism lipid membranes, leading to rapid osmotic disruption and cell lysis (23). The electrostatic attraction provided by the cationic surface charge of CPC-based nanoemulsions appears to overcome the lipopolysaccharide (LPS)-mediated resistance of gram-negative bacteria to neutral and anionic detergents (23). The nanoemulsion used in this study was not selected for specific activity against the bacterial species included in our test panel. However, in preliminary studies, we found that the bactericidal activity of NB-401 against gram-negative bacteria was enhanced by the addition of EDTA, which likely chelates divalent cations that stabilize outer membrane LPS thereby facilitating interactions with the cationic emulsion. This interaction most likely leads to membrane permeabilization and lysis as well as augmentation of transmembrane diffusion of macromolecules (1, 26, 32, 59).

Inhaled nebulized hypertonic saline recently has been shown to have clinical benefit in the management of CF (18), possibly resulting from osmotic restoration of airway surface fluid and improvement of airway mucus rheological properties (19). The addition of 7% saline did not decrease the bactericidal activity of NB-401. In preliminary studies, we found NB-401 to be stable after nebulization (using a PARI LC Plus.
nebulizer) in 7% saline and well tolerated by mice as a single inhaled dose (data not shown).

We focused our investigation of NB-401 on species within the Bcc, as infection with these species is particularly refractory to antimicrobial therapy and associated with increased rates of morbidity and mortality in CF (7). Importantly, infection with Bcc is also regarded by many CF care centers as an absolute contraindication to lung transplantation (34). Because *B. multivorans* and *B. cenocepacia* account for the majority of Bcc infection in CF (48), we included relatively more strains from these two species. We also included *B. gladioli*, which although not a member of the Bcc, is being recovered with increasing frequency from CF patients (4). The numbers of strains included in our test panel from the remaining species were also chosen to reflect the relative proportion of these species recovered from CF patients. The exception is *Acinetobacter*, which although currently infrequently recovered in CF, appears to be an emerging pathogen in this patient population. The majority (94%) of isolates in the test panel were recovered from cultures of respiratory specimens from persons with CF.

The panel also included one representative isolate from each of five previously described so-called epidemic lineages, each of which has been identified as infecting multiple CF patients. These included the *B. cenocepacia* ET12 (29), PHDC (12), and Midwest (16) lineages, as well as the *B. multivorans* OHBM lineage (5) and the *B. dolosa* SLC6 lineage (5). Finally, to ensure a stringent test of the activity of NB-401, one-third of the isolates in the test panel were multi-drug resistant; 20 of these were panresistant. To avoid duplicate testing of the same strain, all isolates were confirmed as distinct strains by genotyping analyses.
NB-401 showed very good activity in vitro against the strains studied. With the exception of two \textit{B. cenocepacia} strains, all strains in the test panel were inhibited by a NB-401 concentration of $\leq 125 \, \mu g/ml$, or a 1:16 dilution of the initial formulation; 59% of strains were inhibited by a concentration of $\leq 31.2 \, \mu g/ml$, a 1:64 dilution of NB-401. NB-401 did not show decreased activity against multi-drug resistant (MIC$_{90} 125 \, \mu g/ml$) or panresistant strains (MIC$_{90} 62.5 \, \mu g/ml$). In general, NB-401 showed slightly less activity against \textit{Burkholderia} species than the other species examined, with 16 of the 18 highest MICs found among \textit{Burkholderia} strains. Conversely, 33 of the 38 lowest MICs (15.6 $\mu g/ml$) were found among non-\textit{Burkholderia} species. We observed no striking differences in NB-401 activity among the 10 \textit{Burkholderia} species examined, although the two strains requiring the highest MICs (250 $\mu g/ml$ and 500 $\mu g/ml$) were both \textit{B. cenocepacia}. Among the non-\textit{Burkholderia} species, NB-401 was most active against \textit{Ralstonia} strains (MIC$_{90} \leq 15.6 \, \mu g/ml$) and relatively less active against \textit{Acinetobacter} strains (MIC$_{90} = 125 \, \mu g/ml$). We found no evidence of tolerance to NB-401 among a subset of 34 strains for which both MIC and MBC were determined. NB-401 killing of planktonically grown bacteria was time- and concentration-dependent; at a concentration 8 times greater than the MIC, complete killing was achieved within 30 min. This suggests that a relatively brief exposure of bacteria to NB-401 could result in a significant decrease in viable bacteria during therapy.

While we found NB-401 to be highly active against a rigorously assembled panel of CF-associated bacteria, the relevance of standard susceptibility testing of planktonically grown bacteria to the treatment of infections involving bacteria within biofilms has been questioned recently. Several species involved in CF infection, including \textit{P. aeruginosa}
and *Burkholderia*, have the capacity to produce biofilms in vitro, and emerging evidence strongly suggests that biofilm formation within the airways of infected patients contributes to disease progression and persistence of infection (20, 39, 50, 51). Furthermore, sessile bacteria within biofilms demonstrate increased antimicrobial resistance relative to their planktonic counterparts (9, 17, 41, 54). We therefore sought to assess the activity of NB-401 against bacteria grown in vitro as biofilms. Using a relatively strict definition of in vitro biofilm formation to ensure a stringent test of NB-401 activity, 12 biofilm-forming strains representing several species and a range of planktonic susceptibilities to NB-401 were identified. As there is currently no standardized protocol for susceptibility testing of bacteria in biofilm, we considered the merits of various published methods (9-11, 17, 41, 44-46, 53, 57) and tested a number of variables to develop a combination of steps that we believed were best suited for our study, particularly considering the opacity of the nanoemulsion. These included comparing inoculum volumes and concentrations, peg versus well surfaces for biofilm growth, durations of biofilm growth, spectrophotometric versus colorimetric measurements, and various methods to suspend biofilm bacteria after treatment, including sonication, centrifugation, and scraping of surfaces to release cells (data not shown). Although the MBIC and MBEC of NB-401 were increased compared to the respective MIC and MBC for each strain tested (median eight-fold increase in MBIC compared to MIC), all 12 strains were inhibited or killed by NB-401 when grown as biofilms. Only a single strain required undiluted NB-401 (2000 µg/ml) for eradication of viable biofilm bacteria. We assessed relative biomass among the biofilm forming strains spectrophotometrically with crystal violet staining and observed no correlation between
In fact, although *B. gladioli* strain AU10529 produced the greatest biomass among the 12 strains tested, the MBIC and MBEC of NB-401 for this strain were relatively low (both 62.5 µg/ml). Conversely, *B. cenocepacia* strain J2315 produced relatively little biomass, yet required a NB-401 MBEC of 1000 µg/ml. Similarly, we observed no correlation between colony counts from untreated biofilm wells and MBIC/MBEC results (data not shown). Intra- and inter-experimental reproducibility of colony counts from the untreated biofilm controls validated the uniformity of the scraping method and the overall biofilm assay.

CF sputum, like biofilm, is reported to antagonize the activity of antibacterial drugs (28). Glycoproteins and high molecular weight DNA are present in elevated levels resulting in exceptionally viscous sputum that provides a physical barrier protecting bacteria. In addition, these macromolecules bind and sequester antibiotics while small cationic molecules and the decreased pH of CF sputum block drug penetration into bacteria and reduce drug bioactivity. The strategy of increasing drug dosing to overcome these obstacles is limited by drug toxicity. To assess the impact of sputum on the antibacterial activity of NB-401, we repeated the standard planktonic testing for the 12 biofilm-forming strains in the presence of CF sputum. We used a mixture of sputum from 15 CF patients to avoid inter-patient variation in macromolecule and high molecular weight DNA composition, and in ionic conditions, and only applied mechanical shearing to minimize changes to the native microenvironment (22). The activity of NB-401 against bacteria suspended in media containing 43% sputum (the maximum sputum concentration achieved in our test system) was decreased with bactericidal concentrations 2- to 32-fold greater than the respective planktonic MBCs.
without sputum. The sputum-MBCs were identical to or within one dilution of the
MBECs obtained with biofilm-grown bacteria. Although the activity of NB-401 was
similarly antagonized by both CF sputum and biofilm growth, it remained bactericidal for
all the strains tested under both test conditions.

In summary, the results of this study support a potential role for NB-401 as an
antimicrobial treatment for infection due to CF-related opportunistic pathogens. Most
strains tested, including many multi- and pan-resistant strains, were inhibited in vitro by
a \(\leq 125 \mu g/ml \) of NB-401 (a 16-fold dilution of the nanoemulsion). This emulsion was
rapidly bactericidal and was active against bacteria whether grown planktonically, as
biofilm, or in the presence of CF sputum. In ongoing work, we have found
nanoemulsions to be exceptionally stable, unchanged after nebulization, and broadly
microbicidal. Importantly, we have not observed the development of resistance to NB-
401 by any bacterial species examined to date. Comprehensive Phase II clinical safety,
tolerability and pharmacokinetic studies of similar nanoemulsion formulations for use as
topical therapeutics for herpes labialis and onychomycosis have shown these
formulations (NB-001 and NB-002, respectively) to be safe and well tolerated as
described previously (30, 31). Nasal application of similar nanoemulsions as vaccine
delivery agents were well tolerated and did not induce inflammation in mice (6, 42), and
a recent pre-clinical safety evaluation of a nanoemulsion vaccine adjuvant similarly
showed no inflammation, cytotoxicity or systemic toxicity with mucosal application (36).
The potential role of NB-401 as an inhaled antimicrobial is supported by preliminary
studies showing that multiple daily inhaled doses of undiluted NB-401 (2000 \(\mu g/ml \)) are
well tolerated in mice, with no apparent pulmonary pathology observed on post–mortum
exam (unpublished). These observations raise the possibility that inhaled NB-401 and hypertonic saline might be useful as a combination inhalational therapy that would have broad spectrum antimicrobial effects without increasing the already high treatment burden for CF patients. Clearly, however, more comprehensive preclinical efficacy and toxicity testing is required, and these studies are underway. Future studies will assess the pharmacokinetics of NB-401 in CF patients and the concentration of NB-401 achievable within the airway lumen and lung parenchyma following inhalation. Such studies will further characterize the potential utility of NB-401 as an inhaled antimicrobial for the management of CF.

ACKNOWLEDGMENTS

This work was funded by the Carroll Haas Research Fund for Cystic Fibrosis and the Michigan Nanotechnology Institute for Medicine and the Biological Sciences. JL was supported by funding from the Cystic Fibrosis Foundation. PM was supported by grant T32 RR07008 from the National Center of Research Resources of the National Institutes of Health. JB reports a financial interest in NanoBio Corp. which holds a license to commercialize therapies based on nanoemulsion technology.
REFERENCES

55. **Taccetti, G., S. Campana, and L. Marianelli.** 1999. Multiresistant non-fermentative gram-negative bacteria in cystic fibrosis patients: the results of an

FIGURE LEGENDS

FIG. 1. Representative microtiter serial dilution MIC assay. Numbers above the plate indicate the concentration (µg/ml CPC) of NB-401 added to each column of wells. The bacterial species added to wells in each row are indicated on the left. The MICs for these strains (top to bottom) are ≤15.6 µg/ml, 125 µg/ml, and 31.2 µg/ml.

FIG. 2. Distribution of NB-401 MICs for 150 Burkholderia and non-Burkholderia strains.

FIG. 3. Time-kill study of NB-401 activity and concentration-dependent inhibition of NB-401 activity by CF sputum. (A) *B. multivorans* ATCC 17616 was exposed to various concentrations of NB-401 around the MIC (62.5 µg/ml) and viable bacterial counts were determined at the times indicated. (B) *B. multivorans* ATCC 17616 was exposed to various concentrations of NB-401 in the presence of three concentrations of CF sputum for 24 hr before viable bacterial counts were determined. Numbers and symbols in inset boxes indicate concentrations of NB-401 (µg/ml CPC) used.
TABLE 1. In vitro activity of NB-401.

<table>
<thead>
<tr>
<th>Species (no. tested)</th>
<th>MIC (µg/ml CPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Burkholderia species</td>
<td></td>
</tr>
<tr>
<td>B. cepacia (5)</td>
<td></td>
</tr>
<tr>
<td>B. multivorans (10)</td>
<td>62.5</td>
</tr>
<tr>
<td>B. cenocepacia (20)</td>
<td>62.5</td>
</tr>
<tr>
<td>B. stabilis (5)</td>
<td></td>
</tr>
<tr>
<td>B. vietnamiensis (5)</td>
<td></td>
</tr>
<tr>
<td>B. dolosa (5)</td>
<td></td>
</tr>
<tr>
<td>B. ambifaria (5)</td>
<td></td>
</tr>
<tr>
<td>B. anthina (5)</td>
<td></td>
</tr>
<tr>
<td>B. pyrrocinia (5)</td>
<td></td>
</tr>
<tr>
<td>B. gladioli (10)</td>
<td>31.2</td>
</tr>
<tr>
<td>Ps. aeruginosa (20)</td>
<td>31.2</td>
</tr>
<tr>
<td>A. xylosoxidans (10)</td>
<td>31.2</td>
</tr>
<tr>
<td>S. maltophilia (15)</td>
<td>≤ 15.6</td>
</tr>
<tr>
<td>Acinetobacter (10)</td>
<td>≤ 15.6</td>
</tr>
<tr>
<td>Pandoraea species</td>
<td></td>
</tr>
<tr>
<td>P. apista (2)</td>
<td></td>
</tr>
<tr>
<td>P. norimbergensis (2)</td>
<td></td>
</tr>
<tr>
<td>P. pnomenusa (2)</td>
<td></td>
</tr>
<tr>
<td>P. pulmonicola (2)</td>
<td></td>
</tr>
<tr>
<td>P. sputorum (2)</td>
<td></td>
</tr>
<tr>
<td>Ralstonia species</td>
<td></td>
</tr>
<tr>
<td>R. mannitoliiytica (5)</td>
<td></td>
</tr>
<tr>
<td>R. pickettii (5)</td>
<td></td>
</tr>
<tr>
<td>Total (150)</td>
<td>31.2</td>
</tr>
<tr>
<td>Strain</td>
<td>Species</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>AU8042</td>
<td>B. multivorans</td>
</tr>
<tr>
<td>AU10398b</td>
<td>B. multivorans</td>
</tr>
<tr>
<td>ATCC 17616</td>
<td>B. multivorans</td>
</tr>
<tr>
<td>AU10321</td>
<td>B. cenocepacia</td>
</tr>
<tr>
<td>LMG16656^T</td>
<td>B. cenocepacia</td>
</tr>
<tr>
<td>AU4757</td>
<td>B. stabilis</td>
</tr>
<tr>
<td>AU10529</td>
<td>B. gladioli</td>
</tr>
<tr>
<td>AU13206</td>
<td>A. xylosoxidans</td>
</tr>
<tr>
<td>AU12828</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>AU8215a</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>AU12914</td>
<td>R. picketti</td>
</tr>
<tr>
<td>AU4194</td>
<td>S. maltophilia</td>
</tr>
</tbody>
</table>

Values represent µg/ml CPC. SMBC is MBC in the presence of 43% CF sputum.
Fig. 1.

No bacteria

B. cenocepacia

B. dolosa

B. gladioli
Fig. 2.
Fig. 3.

A.

B.