NOTES

Pharmacokinetics of Itraconazole in Diabetic Rats

Short title: ITRACONAZOLE PK IN DMIS RATS

Unji Lee,1 Young H. Choi,2 So H. Kim,3 and Byung K. Lee1,*

College of Pharmacy, Ewha Womans University, 11-1, Daehyun-Dong, Seodaemun-Gu, Seoul 120-750, South Korea1, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea2, and Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Kangnung National University, 120, Gangneung Daehangno, Gangneung, Kyunggi-Do 210-702, South Korea3

* Corresponding author. Mailing address: College of Pharmacy, Ewha Womans University, 11-1, Daehyun-Dong, Seodaemun-Gu, Seoul 120-750, South Korea. Phone: 82 2 32776649. Fax: 82 2 32772851. E-mail: bklee@ewha.ac.kr
After intravenous or oral administration of 10 mg/kg itraconazole to rats with streptozotocin-induced diabetes mellitus and control rats, the total area under the curve up to 24 h (AUC$_{0-24\,\text{h}}$) for itraconazole and that for its metabolite 7-hydroxyitraconazole were similar between the two groups of rats. This may be explained by the comparable hepatic and intestinal intrinsic clearance rates for the disappearance of itraconazole and formation of 7-hydroxyitraconazole in both groups of rats.
Itraconazole is a prototype triazole antifungal agent. Superficial fungal infections of the feet are common among elderly patients with diabetes mellitus, and itraconazole has been shown to have acceptable cure rates (12). In humans, hepatic cytochrome P450 (CYP) 3A4 appears to be involved in the metabolism of itraconazole to form several metabolites, including 7-hydroxyitraconazole (9). No in vivo studies on itraconazole metabolism in rats have been reported. Hepatic CYP3A1 (5) and 3A2 (10) protein and/or mRNA levels have been shown to increase in male Sprague-Dawley rats with diabetes mellitus induced by streptozotocin (DMIS rats), but there are no reports on the intestinal CYP3A subfamily in DMIS rats. Furthermore, the pharmacokinetics of itraconazole and 7-hydroxyitraconazole may differ between intravenously and orally administered itraconazole in DMIS rats.

In the present study, itraconazole metabolism was examined in DMIS rats, as an animal model of diabetes mellitus. We report the pharmacokinetics of itraconazole and 7-hydroxyitraconazole after intravenous or oral administration in DMIS rats compared with control rats. Our results show that hepatic CYP3A1/2 is responsible for the metabolism of itraconazole and formation of 7-hydroxyitraconazole in rats and that the expression of intestinal CYP3A1/2 protein was not altered in DMIS rats compared with control rats, based on Western blot analysis.

Overall, the methods used in this study were similar to those described in previous reports. The chemicals used in addition to itraconazole, the methods of housing and handling the male Sprague-Dawley rats (7–9 weeks old, weighing 230–280 g), the intravenous and oral administration of itraconazole, the measurement of plasma protein binding values of itraconazole by equilibrium dialysis, and the high-performance liquid chromatographic analysis of itraconazole and 7-hydroxyitraconazole were all as...
described previously (1, 11). Diabetes mellitus was induced with streptozotocin (5). Seven control rats and eight DMIS rats were used in the intravenous administration study. Nine control and nine DMIS rats were used in the oral study. Intravenous administration of itraconazole to control rats pretreated with dexamethasone and troleandomycin was performed as previously described (3). Hepatic and intestinal microsomes were prepared from control and DMIS rats (6). The protein expression of intestinal CYP3A1/2 was examined by Western blot analysis (7).

The procedures for measuring V_{max} and K_{m} for the disappearance of itraconazole and formation of 7-hydroxyitraconazole were similar to those in a previous report (6). Microsomes (equivalent to 0.5 mg protein); 5 µl of dimethylsulfoxide containing 2.5, 5, 10, 20, 30, or 50 µM itraconazole; and 50 µl of 0.1 M phosphate buffer (pH 7.4) containing 1 mM NADPH were mixed and incubated for 0, 15, 30, 45, or 60 min for hepatic microsomes, or 5, 15, 30, 45, 60, or 75 min for intestinal microsomes. All microsomal incubation conditions were within the linear range of the reaction. After incubation for 45 min (for hepatic microsomes) or 50 min (for intestinal microsomes), 100 µl of each reaction mixture were transferred to a test tube containing 100 µg/ml R51012 (internal standard) in 50 µl of acetonitrile, 250 µl of 0.1 M carbonate buffer (pH 9.8), and 1 ml of methyl t-butyl ether. The kinetic constants (K_{m} and V_{max}) were calculated using a non-linear regression method (4). Intrinsic clearance (CL$_{\text{int}}$) was calculated by dividing V_{max} by K_{m}.

The total area under the plasma concentration-time curve from time zero to infinity (AUC$_{0-\infty}$) or to the last measured time at 24 h (AUC$_{0-24\text{ h}}$) was calculated using the trapezoidal rule-extrapolation method (2). The peak plasma concentration (C_{max}) and time to reach C_{max} (T_{max}) were directly read from the experimental data. The percentage
of the dose excreted in a 24-h urine sample \((A_{\text{e}}, 0–24\ h)\) and that recovered from the gastrointestinal tract (including its contents and feces) sampled at 24 h \((G_{\text{I}, 24\ h})\) were also measured \((11)\). All results are expressed as means ± standard deviations, with the exception of values for \(T_{\text{max}}\), which are expressed as medians with ranges. Unpaired \(t\)-tests were performed, and values of \(P < 0.05\) were regarded as statistically significant.

Plasma protein binding values of itraconazole at 5 µg/ml were similar between the control \((97.9 ± 0.242\%)\) and DMIS \((97.9 ± 0.137\%)\) rats \((n = 4\) for each). The protein expression of intestinal CYP3A1/2 as determined by Western blot analysis did not differ between the two groups of rats \((n = 3\) for each) \((\text{data not shown})\). Furthermore, \(K_m\), \(V_{\text{max}}\), and \(\text{CL}_{\text{int}}\) values for the disappearance of itraconazole and formation of 7-hydroxyitraconazole in both hepatic and intestinal microsomes \((n = 4\) were comparable between the control and DMIS rats \((\text{Table 1})\).

In rats pretreated with dexamethasone, which induces CYP3A1/2, the AUC\(_{0–\infty}\) of intravenous itraconazole \((20\ mg/kg)\) was significantly smaller \((\text{by } 59.4\%; 641 ± 110\ vs. 1580 ± 125\ \mu\text{g}\cdot\text{min}/\text{ml})\), and the \(AUC\(_{0–\infty}\), \text{7-hydroxyitraconazole}/AUC\(_{0–\infty}\), \text{itraconazole}\) ratio was significantly greater \((\text{by } 113\%; 204 ± 55.2\ vs. 95.6 ± 12.3\%)\) than those in rats without dexamethasone. Conversely, in rats pretreated with troleandomycin, which inhibits CYP3A1/2, the AUC\(_{0–\infty}\) of intravenous itraconazole \((20\ mg/kg)\) was significantly greater \((\text{by } 68.2\%; 3380 ± 873\ vs. 2010 ± 500\ \mu\text{g}\cdot\text{min}/\text{ml})\), and the \(AUC\(_{0–\infty}\), \text{7-hydroxyitraconazole}/AUC\(_{0–\infty}\), \text{itraconazole}\) ratio was significantly smaller \((\text{by } 24.7\%; 54.5 ± 13.4\ vs. 72.4 ± 9.01\%)\) than those in rats without troleandomycin. These data suggest that the metabolism of itraconazole and formation of 7-hydroxyitraconazole were mediated via hepatic CYP3A1/2 in rats. The amino acid sequences of human CYP3A4 and rat CYP3A1 are 73\% identical \((8)\).
The mean arterial plasma concentration-time profiles of itraconazole and 7-hydroxyitraconazole after a 1-min intravenous infusion of 10 mg/kg itraconazole in control and DMIS rats are shown in Fig. 1A and B, respectively. There was no difference in the \(\text{AUC}_{0-24\, \text{h}} \) for itraconazole (516 ± 88.5 and 522 ± 171 \(\mu \text{g} \cdot \text{min} / \text{ml} \) in control and DMIS rats, respectively) or 7-hydroxyitraconazole (207 ± 69.6 and 149 ± 64.8 \(\mu \text{g} \cdot \text{min} / \text{ml} \), respectively) between the two groups of rats. The demonstration of comparable pharmacokinetics between control and DMIS rats in both the liver and intestines provides major evidence for the efficacy of itraconazole in diabetic patients.

This is further supported by comparable hepatic \(\text{CL}_{\text{int}} \) for the disappearance of itraconazole and formation of 7-hydroxyitraconazole (Table 1), as the fraction of free itraconazole in the plasma (unbound to plasma proteins) was comparable between the two groups of rats. Itraconazole has a low hepatic extraction ratio in rats (13); the hepatic first-pass effect is almost negligible (11). The above data suggest that even if the protein expression and/or mRNA levels of hepatic CYP3A1 (5) and 3A2 (10) were to be higher in DMIS rats, there was no significant difference in the hepatic metabolism of itraconazole between the control and DMIS rats. The \(\text{Ae}_{0-24\, \text{h}} \) for itraconazole (<1.02% of the dose) and the GI\(_{24\, \text{h}} \) (<0.0880% of the dose) were almost negligible. Plasma itraconazole and 7-hydroxyitraconazole were detected only up to 24 h after intravenous administration of itraconazole in the rats (Fig. 1A and B).

The mean arterial plasma concentration-time profiles for itraconazole and 7-hydroxyitraconazole after oral administration of 10 mg/kg itraconazole in control and DMIS rats are shown in Fig. 1C and D, respectively. The \(\text{AUC}_{0-24\, \text{h}} \) for itraconazole (345 ± 94.3 and 308 ± 154 \(\mu \text{g} \cdot \text{min} / \text{ml} \) in control and DMIS rats, respectively) and that for 7-hydroxyitraconazole (362 ± 131 and 374 ± 181 \(\mu \text{g} \cdot \text{min} / \text{ml} \), respectively) were
comparable between the two groups of rats. This may be explained by comparable intestinal CL\textsubscript{int} rates for the disappearance of itraconazole and the formation of 7-hydroxyitraconazole in both groups of rats, as a result of similar expression levels of intestinal CYP3A1/2 protein. If the present data were to be extrapolated to humans, changes in the dosage regimen of itraconazole would not appear to be required in diabetic patients.
REFERENCES

Figure Legend

FIG. 1. Mean arterial plasma concentration–time profiles of itraconazole (A, C), and 7-hydroxyitraconazole (B, D) after intravenous (A, B) or oral (C, D) administration of itraconazole at 10 mg/kg in control (●) and DMIS (○) rats. Error bars, standard deviations.
Plasma concentration of 7-hydroxyitraconazole (µµµµg/ml)

Plasma concentration of itraconazole (µµµµg/ml)

Time (min)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Disappearance of itraconazole</th>
<th>Formation of 7-hydroxyitraconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (n = 4)</td>
<td>DMIS (n = 4)</td>
</tr>
<tr>
<td>Hepatic microsomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{max}) (nmol/min/mg protein)</td>
<td>0.111 ± 0.0813</td>
<td>0.705 ± 0.505</td>
</tr>
<tr>
<td>(K_m) (µM)</td>
<td>11.1 ± 6.00</td>
<td>57.7 ± 39.1</td>
</tr>
<tr>
<td>(CL_{int}) (ml/min/mg protein)</td>
<td>0.00904 ± 0.00290</td>
<td>0.0146 ± 0.00559</td>
</tr>
<tr>
<td>Intestinal microsomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{max}) (nmol/min/mg protein)</td>
<td>0.207 ± 0.155</td>
<td>0.124 ± 0.0861</td>
</tr>
<tr>
<td>(K_m) (µM)</td>
<td>48.4 ± 33.1</td>
<td>31.2 ± 27.5</td>
</tr>
<tr>
<td>(CL_{int}) (ml/min/mg protein)</td>
<td>0.00413 ± 0.00926</td>
<td>0.00845 ± 0.00150</td>
</tr>
</tbody>
</table>

* Values are means ± standard deviations.