Attenuation of cerebrospinal fluid inflammation by the non-bacteriolytic antibiotic daptomycin vs ceftriaxone in experimental pneumococcal meningitis

Running title: Daptomycin in experimental pneumococcal meningitis

Grandgirard Denis, Kevin Oberson, Angela Bühlmann, Rahel Gäumann, Stephen L. Leib*

Laboratory for Experimental Neuroinfectiology, Institute for Infectious Diseases, University of Bern, Bern, Switzerland

Abstract: 75

Body text: 1322

* Reprints or correspondence: Stephen L. Leib, MD, University of Bern, Institute for Infectious Diseases, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland, Phone ++41 41 632 4949, Fax : +41 31 632 3550, email : stephen.leib@ifik.unibe.ch
Abstract

Antibiotica-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and the temporal kinetic of the cerebrospinal fluid (CSF) inflammation was assessed in an infant rat pneumococcal meningitis model for the non-bacteriolytic antibiotic daptomycin vs ceftriaxone.

Daptomycin led to lower CSF concentrations of IL-1β, IL-10, IL-18; MCP-1 and MIP-1α (p<0.05). In experimental pneumococcal meningitis, daptomycin vs ceftriaxone treatment resulted in more rapid bacterial killing, lower CSF inflammation and less brain damage.
Up to half of the survivors of pneumococcal meningitis are left with neurological sequelae, the rate of which remained unchanged over the last few decades, despite continuous improvements in therapy (16). In patients and in corresponding experimental models, brain injury caused by bacterial meningitis has been shown to prominently affect three brain structures, the cortex, the hippocampus and the inner ear (2, 6). The different forms of tissue damage represent the morphological correlate of the functional deficits observed in survivors including cerebral palsy, deficits in learning and memory, and hearing loss (9, 12).

Inflammation has been shown to play a key role in the pathophysiology leading to the development of brain damage consecutive to bacterial meningitis (11). Anti-inflammatory corticosteroids have been used as adjunctive therapy for bacterial meningitis, but conclusive evidence for a beneficial effect on brain damage, specifically in paediatric pneumococcal meningitis, is lacking (20). Prevention of the inflammatory reaction leads to less brain damage in experimental bacterial meningitis (14). Avoidance of the release of pro-inflammatory bacterial components upon use of non-bacteriolytic antibiotics is a promising alternative strategy to the use of corticosteroids (7, 14, 17) The non-bacteriolytic lipopeptide daptomycin was at least as efficient as ceftriaxone at eliminating bacteria from the cerebrospinal fluid (CSF) in experimental pneumococcal meningitis. Furthermore, daptomycin significantly lowered the CSF concentration of matrix-metalloproteinase-9 (MMP-9), an enzyme critically involved in the pathophysiology of brain damage and in consequence caused less brain damage than ceftriaxone (7). Here we extend these observations by investigating the quality and the temporal kinetic of CSF inflammation in infant rats with pneumococcal meningitis after treatment with daptomycin vs ceftriaxone.
All animal studies were approved by the Animal Care and Experimentation Committee of the Canton Bern, Switzerland and followed the Swiss National guidelines for performance of animal experiments. Eleven day old Wistar rats (n=28, Charles River, Germany) were injected intracisternally (i.c) with 10 µl of saline containing 1.5 x 10^4 colony forming units (CFU) of *Streptococcus pneumoniae* (clinical isolate of a serotype 3 strain) as previously described (7, 10). Eighteen hours later, animals were randomized to receive daptomycin (n=14, 50 mg/kg body weight, s.c, Cubicin®, kindly provided by Cubist Pharmaceuticals, Lexington, Mass.) or ceftriaxone (n=14, 100 mg/kg body weight s.c., Rocephine®, Roche Pharma, Basel, Switzerland). The dosages of daptomycin and ceftriaxone used in this study are equal to those used in previously published work (7). Available data on PK/PD of daptomycin in the CSF during experimental pneumococcal meningitis are derived from the rabbit model (3). For daptomycin, a comparable dosage in adult rats (40 mg/kg, s.c.) resulted in a Cmax and an AUC_{0-24} in the serum comparable to what is seen in humans with 6-8 mg/kg i.v. (15). More recently, a similar Cmax was also obtained in adult mice after a dosage of 25 mg/kg i.p. (13). Based on a comparable body weight of infant rats and adult mice of approx 25 -30 g, a 50 mg/kg dosage, adjusted for an increased metabolism in younger animals, is expected to lead to comparable serum levels of daptomycin. CSF samples were obtained by puncture of the cisterna at defined time points after the infection, i.e. 18, 20 and 24 (n=7 for each treatment group), and 40 h after infection. (n=7 for daptomycin and n=8 for ceftriaxone). Control experiment with untreated animals was not performed, because excessive mortality is observed at these time points without antibiotic treatment. Bacterial killing was significantly more rapid by therapy with daptomycin vs ceftriaxone two hours after the initiation of the therapy. Four hours of daptomycin
therapy decreased CSF bacterial titers below the detection limit (<10^3 CFU/ml), leading to a more rapid sterilization of the CSF (figure 2A).

The CSF concentrations of defined inflammatory mediators (IL-1β, IL-2, IL-6, IL-10, IL-18, TNF-α, IFN-γ, GM-CSF, GRO/KC, MIP-1α and MCP-1) were assessed, using a microsphere-based multiplex assay (Lincoplex®, Millipore Corporation) as described previously (5). The addition of 1, 10 or 100 µg/ml of daptomycin or ceftriaxone to a mixture of cyto- and chemo-kines at known concentrations had no effect on the performance and the results of immunoassay (data not shown). A statistically significant (p<.05) difference in the profile of IL-1β, IL-10, IL-18; MCP-1 and MIP-1α protein expression was found between the two therapeutic modalities, as determined by two way ANOVA (Figure 1). Ceftriaxone led to a marked increase in the CSF concentration of the above detailed cyto- and chemo-kines at 2-6 h after the initiation of therapy while the reaction to daptomycin treatment was limited to a moderate increase in IL-18 only (figure 1). It has been shown that daptomycin does not exhibit an immunomodulatory effect in an experimental endotoxin model of human whole blood (19). It is therefore unlikely that the lower CSF levels of cyto- and chemo-kines by treatment with daptomycin is due to an anti-inflammatory activity of daptomycin by itself.

For histopathological examination of brain damage, animals were sacrificed at 40 h after infection. Twelve coronal brain sections per animal were evaluated for neuronal injury of the cortex (Figure 2 C, D) and hippocampus, as described previously (5). The area of cortical necrosis was expressed as the percentage of the total area of cortex in each section and the mean value per animal was calculated. Treatment with daptomycin vs ceftriaxone significantly reduced the occurrence (1/14 vs 6/14, p<.08, Fischer’s exact test) and the severity of cortical damage (0.13±0.5 vs 4.7±8.8 percent of total cortical volume, n=14 for each group, p=.03, Mann Whitney)
Apoptosis in the dentate gyrus was not significantly different between the two treatment groups (data not shown).

Daptomycin disrupts membrane functions of gram-positive bacteria. It has also recently been shown to bind to YycG, interfering with the function of this key sensor kinase, leading to cell death without lysis (1). Accordingly, the release of [3H]-choline from the cell wall of labeled bacteria was diminished in daptomycin-treated rabbits in comparison to ceftriaxone during experimental pneumococcal meningitis (18). In the present experimental model, treatment with daptomycin compared to ceftriaxone led to a more rapid decrease in CSF bacterial titer and a reduction in the occurrence of cortical neuronal injury (7). A decrease in the inflammatory reaction, as suggested by a significant difference in metalloprotease-9 activity 22 hours after treatment was proposed as a factor contributing to the improved outcome by daptomycin (7). In the present study, we extended these observations by focusing on the quality and temporal kinetic of the inflammatory reaction over 22 h after antibiotic therapy, a critical time with respect to the pathophysiological mechanisms leading to neuronal injury. From the eleven cyto- and chemo-kines measured, significant lower concentrations of IL-1β, IL-10, IL-18; MCP-1 and MIP-1α were documented in the CSF of daptomycin vs ceftriaxone treated animals. Although not significant, CSF levels of IL-6, GRO/KC and TNF-α were also lower in daptomycin-treated animals.

In a murine model, it has recently been shown that daptomycin and vancomycin, in combination with dexamethasone, were similarly active for the treatment of pneumococcal meningitis (13). The effect of dexamethasone was shown to only marginally affect the antibacterial activity of daptomycin alone or in combination with ceftriaxone, although the penetration of daptomycin in the inflamed meninges was reduced (4).
Successful treatment of a patient with methicillin-resistant *S. aureus* with daptomycin has recently been reported (8). But because the activity of daptomycin is limited against Gram positive bacteria, a clinical use as an empiric therapy of bacterial meningitis would require a combination with a broad spectrum antibiotic. The principle of sequential therapy with a non-lytic antibiotic i.e. rifampicin with ceftriaxone has been recently demonstrated to cause less brain injury (17). Important with a view on a prospective clinical application is the recent finding that the combination of daptomycin with ceftriaxone was show to be more active that vancomycin plus ceftriaxone in experimental rabbit meningitis (4). This present evidence supports further investigations on the use of daptomycin in combination therapy for bacterial meningitis, and how it influences the inflammatory reaction and the development of neurological damage.

This work was supported by the Swiss National Science Foundation (grant 310030-116257) and by unrestricted research grants from Cubist Pharmaceuticals, Lexington, MA and Novartis Pharma Schweiz, AG, Bern, Switzerland.
REFERENCES.


LEGEND TO FIGURES

Figure 1
Profile of cyto-/chemokines concentration in the CSF by treatment with daptomycin vs ceftriaxone at different time points (2, 6 and 40 hours) after initiation of therapy. The concentration of IL-1β, IL-10, IL-18, MCP-1 and MIP-1α were significantly (p<.05, two way ANOVA) lower in daptomycin treated animals.

Figure 2
A) CSF bacterial titers after antibiotic therapy. Sterilization of CSF was more rapid by therapy with daptomycin (open circle) that by therapy with ceftriaxone (closed circle). Six hours after therapy, CSF was sterilized by daptomycin. At 2 and 4 hours after therapy, bacterial titers differ significantly (p<.05, Mann-Whitney) between treatment groups.

B) Brain damage in experimental pneumococcal meningitis. The extent of cortical damage is significantly reduced (p=.02 Mann-Whitney) by daptomycin vs ceftriaxone treatment.

C) Histopathology (overview). Cortical injury assessed by Nissl staining is characterized by wedge shaped areas of of decreased neuronal density (arrowheads) suggestive of ischemic necrosis (cresyl violet; original magnification x 5; scale bar = 1 mm).

D) Histopathology. Focus of cortical neuronal loss (left side; arrowheads) containing neurons with morphologic features of necrosis, including pyknotic nuclei, cell swelling and fading of cytoarchitecture, is sharply demarcated from preserved brain tissue (right side; original magnification x200; scale bar = 50 µm; cresyl violet)