Vancomycin dosing in critically ill patients – robust methods for improved continuous infusion regimens

Jason A Roberts, PhD FSHP (1); Fabio Silvio Taccone, MD (2); Andrew A Udy MBChB, FCICM (1); Jean-Louis Vincent MD, PhD, FCCM (2); Frédérique Jacobs MD, PhD (3); Jeffrey Lipman FCICM MD (1)

(1) Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
(2) Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
(3) Department of Infectious Diseases, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium

Keywords: vancomycin; glycopeptide; pharmacokinetics; pharmacodynamics, continuous infusion; sepsis; dosing

Institution where data collection occurred: Erasme Hospital, Brussels, Belgium

Word count: Abstract – 230; Main Body – 3402; Figures/Tables – 275; References – 795

Address for correspondence: (No reprints will be ordered)

Jason A Roberts
Burns Trauma and Critical Care Research Centre, The University of Queensland
Level 3 Ned Hanlon Building, Royal Brisbane and Women’s Hospital, Butterfield St
Brisbane Queensland Australia 4029; Ph +617 3636 4108; Fax +617 3636 3542
j.roberts2@uq.edu.au
Abstract

Despite the development of novel antibiotics active against Gram positive bacteria, vancomycin generally remains the first treatment, although rapidly achieving concentrations associated with maximal efficacy provides an unresolved challenge. The objective of this study was to conduct a population pharmacokinetic analysis of vancomycin in a large population of critically ill patients. This was a retrospective data collection of 206 adult septic critically ill patients that were administered vancomycin as a loading dose followed by continuous infusion. The concentration versus time data for vancomycin in serum was analyzed by a non-linear mixed effects modeling approach using NONMEM. Monte-Carlo simulations were performed using the final covariate model. We found that the best population pharmacokinetic model consisted of a one-compartment linear model with combined proportional and additive residual unknown variability. The volume of distribution of vancomycin (1.5L/kg) was described by total body weight and clearance (4.6L/hr) by 24-hour urinary creatinine clearance (CrCl), normalized to body surface area. Simulation data showed that a 35mg/kg loading dose was necessary to rapidly achieve vancomycin concentrations of 20mg/L. Daily vancomycin requirements were dependant on CrCl, such that a patient with a CrCl of 100 ml/min/1.73m² would require at least 35mg/kg per day by continuous infusion to maintain target concentrations. In conclusion, we have found that higher than recommended loading and daily doses of vancomycin seem to be necessary to rapidly achieve therapeutic serum concentrations in these patients.
Introduction

Infections in critically ill patients occur frequently and may lead to the development of sepsis or septic shock. The morbidity and mortality rates for sepsis and septic shock remain unacceptably high with septic shock still associated with a 35 to 65% in-hospital mortality rate (5, 9). A significant body of work now describes the importance of early and appropriate antibiotic therapy as the intervention likely to minimize therapeutic failure (10, 17, 18).

Of significant concern for clinicians is the increasing prevalence of multi-drug resistant bacteria, particularly methicillin-resistant *Staphylococcus aureus* (MRSA), which has been found to be the causative pathogen in more than 10% of infections resulting in septic shock (9). Furthermore, data from the US have reported that 25.8% of bacteremias are due to MRSA (4), with mortality rates for MRSA bacteremia in critically ill patients being reported between 45 and 55% (3, 13). Certainly, mortality rates for MRSA pneumonia in critically ill patients may be even higher (12). Whilst newer agents are now available, vancomycin remains the standard of care for treatment of MRSA infections in the intensive care unit (ICU) (30).

Despite vancomycin being in ubiquitous use for over 50 years, dosing in specific populations, particularly the critically ill, remains confused. Conventional dosing regimens of 500mg every 6 hours or 1g every 12 hrs have little evidence supporting efficacy (7), while data from Moise-Broder *et al.*, (22) in MRSA pneumonia suggests that standard dosing approaches are unlikely to achieve the required pharmacodynamic index of vancomycin exposure needed for optimal activity. Pursuant to this, a consensus review in 2009 by the American Society of Health System Pharmacists, Infectious Diseases Society of America and the Society of Infectious Disease Pharmacists (ASHP/IDSA/SDIP) recommended more aggressive vancomycin dosing to achieve the pharmacodynamic index associated with efficacy (30).
Continuous infusion (CI) of vancomycin allows more rapid achievement of therapeutic drug concentrations than intermittent infusion and may optimize its bactericidal activity. Recent publications recommend a loading dose of 15 mg/kg followed by a daily dose of 30 mg/kg (33), however data on the efficacy of this strategy in a septic population are scarce.

In this respect, the aim of this study was to conduct a population pharmacokinetic analysis of vancomycin continuous administration in a large cohort of critically ill patients, in order to better inform dosing in this population and reduce the risks for sub-therapeutic drug exposure.

Patients and Methods

Patients and data collection

We reviewed all the medical charts of patients with a diagnosis of sepsis (18) admitted in the Intensive Care Unit (ICU) at Erasme Hospital (Brussels, Belgium) between January 2008 and December 2009, in whom continuous infusion (CI) of vancomycin, either in monotherapy or combined with other antimicrobials, was administered. Patients meeting any of the following criteria were excluded: (a) age less than 18 yrs; (b) previous administration of vancomycin by intermittent infusion (<48 hrs from the onset of CI); (c) renal replacement therapy; (d) duration of CI of vancomycin of < 48 hrs; (e) pregnancy, burns or cystic fibrosis (because of altered pharmacokinetics, independent of sepsis). The study period was limited to the ICU stay. Ethical approval to conduct the study was granted by the local Ethics Committee.

In all study patients, data were collected in an institutional database. The severity of illness of each patient was characterized using the Acute Physiology and Chronic Health Evaluation
(APACHE) II (16) and SOFA (32) scores determined on the first day of antibiotic treatment. Urinary creatinine clearance (CrCl) was collected as routine procedure in all of the patients, calculated daily and normalized to body surface area (BSA). Treatment of patients with catecholamines or mechanical ventilation was also recorded, as was length of ICU and hospital stay, overall mortality, and cause of death.

Vancomycin treatment

Administration of vancomycin (Vancocin; Eli Lilly, Indianapolis, Ind, USA) was by continuous infusion in accordance with local guidelines, and often empirical in the setting of presumed or documented Gram positive hospital- or ICU-acquired infections, especially when MRSA or other resistant Gram positive bacteria (i.e., Staphylococcus epidermidis or ampicillin-resistant Enterococcus) were suspected. Continuous infusion is the preferred method of administration in the unit where the data collection occurred because we believe dose adjustment to achieve therapeutic concentrations to be easier than with intermittent infusion. Previous clinical outcome studies have shown equivalent outcomes for vancomycin administered by either approach (33). In this study, the choice of antibiotic regimen was at the discretion of the clinician; published recommendations (15 mg/kg of loading dose followed by 30 mg/kg daily dose calculated on the total body weight, TBW) (33), with doses rounded off to 125 mg, were used in some patients. In others, local simplified recommendations were used, consisting of a 750 mg (if TBW < 70 kg) or 1000 mg (if TBW > 70 kg) loading dose diluted in 100 ml of 5% dextrose in water and administered over 30 min, followed by 2000 mg (if TBW < 70 kg) or 3000 mg (if TBW > 70 kg) daily dose of vancomycin, diluted in 250 ml of 5% dextrose in water and infused over 24 h in case of normal renal function. In case of renal failure, the loading dose was unchanged but the daily dose was adapted to the renal clearance. The aim of this regimen was to provide serum drug concentrations between 20 and
30 mg/L (28). Where concentrations were less than 20 mg/L, a loading dose of 500 mg and an increase of 500-1000 mg per day of total dose was made. In patients where concentrations were greater than 30 mg/L, CI was discontinued for 4 hours and the total dose reduced by 500-1000 mg per day.

Vancomycin Assay

Concentrations of vancomycin in serum were determined by fluorescence polarization immunoassay (TDx; Diagnostic Division, Abbott Laboratories, Irving, Tex.). The assay limits and intraday and between-day coefficients of variation for vancomycin were 0.6 mg/ml and 0.6%, respectively. The linearity (r^2) of the assay was 0.999.

Blood samples (5mL) for drug assays were taken every day at 8 am and sent immediately to the central laboratory. As the aim was to examine the ‘pseudo steady-state’ phase of the drug regimen, at least 16 hours from the onset of CI were allowed before sampling. We use the term ‘pseudo steady-state’ as whether steady-state is ever achieved in ICU patients with sepsis is debatable. The exact sampling time was recorded by the nursing or medical staff in a computerized ICU system.

Pharmacokinetic and Statistical Analysis

The concentration versus time data for vancomycin in serum were analyzed by a non-linear mixed effects modeling approach (2) using NONMEM (Version 6.1, GloboMax LLC, Hanover, MD, USA) with double precision with the COMPAQ VISUAL FORTRAN compiler. The NONMEM runs were executed using Wings for NONMEM (WFN 6.1.3). Data were analysed using the first order conditional estimation method with the Interaction program.
For the population PK analysis, the serum vancomycin concentrations were fitted to one, two or three-compartment linear models using subroutines from the NONMEM library (2). The concentration–time profile can be described as (Equation 1):

\[Y_{ij} = f_{ij}(\theta, x_{ij}) \cdot e^{cij} + e_{2ij}, \]

where \(y_{ij} \) is the \(j \)th observed concentration at time points \(x_{ij} \) for the \(i \)th subject. Also, \(\theta_i \) represents fixed effects parameter of the structural model to be estimated. \(f_{ij} \) is the function for the prediction of the \(j \)th response for the \(i \)th subject. Finally, \(e_{ij} \) denotes the \(j \)th measurement error for the \(i \)th subject. In other words, \(e_{ij} \) is the difference of the observed concentration from the predicted concentration. It is assumed to be independent and identically distributed with a normal distribution around the mean zero and variance \(\sigma^2 \).

Between-subject variability

Between-subject variability was modeled using an exponential variability model (Equation 2):

\[\theta_i = \theta \cdot e^{\eta_i}, \]

where \(\theta_i \) is the value of the parameter for the \(i \)th subject, \(\theta \) is the typical value of the parameter in the population and finally \(\eta_i \) is a random vector with normal distribution, zero mean and variance–covariance matrix of between-subject variability \(\Omega \) to be estimated.

Model diagnostics
To assess model validity, statistical comparison of nested models was undertaken in NONMEM based on a χ^2 test of the difference in the objective function. A decrease in the objective function of 3.84 units ($P < 0.05$) was considered significant. Goodness-of-fit was evaluated by visual inspection of diagnostic scatter plots, including observed and predicted concentrations versus time, weighted residual versus time and residual versus predicted concentrations.

Bootstrap

A non-parametric bootstrap method (23) ($n = 1000$) was used to study the uncertainty of all pharmacokinetic parameter estimates in the final base model. From the bootstrap empirical posterior distribution we have been able to obtain the 95% confidence interval (2.5–97.5% percentile) for the parameters, as described previously (21).

Covariate screening

The covariates analyzed were age, TBW, creatinine clearance estimated from urinary 24-hour collection, gender, SOFA score and body mass index. Possible covariates were added in a stepwise fashion into the model. Covariates were considered for inclusion in the model if they were biologically plausible and there was improvement of the base model, i.e. decrease in objective function (at least 3.84 units), decrease in the unexplained between-subject variability of the parameter or decrease in residual unexplained variability.

Dosing simulations

Three sets of Monte-Carlo dose simulations were undertaken. Firstly, the effect of an initial TBW-based loading dose was simulated using doses of 5mg/kg (administered over 60-min), 15mg/kg (administered over 60-min), 20mg/kg (administered...
over 90-minutes), 25mg/kg (administered over 120-minutes), 30mg/kg (administered over
180-minutes); 35mg/kg (administered over 180-minutes) and 40mg/kg (administered over
180-minutes). The different durations of infusion were chosen based on local clinical practice.
The same daily dose was simulated for each of the loading doses (35 mg/kg for a patient with
a CrCl of 100 mL/min/1.73m2).

Secondly, the effect of different creatinine clearances on vancomycin concentrations was
simulated. The CrCl simulated were 50 ml/min/1.73m2, 100 ml/min/1.73m2, 150
ml/min/1.73m2, 200 ml/min/1.73m2 and 250 ml/min/1.73m2. Each patient received a
simulated loading dose of 35mg/kg (over 180 minutes – prolonged duration to minimize
likelihood of infusion-related toxicity) and the simulated continuous infusion dose was kept
constant at (35 mg/kg per day). The ability of each dosing regimen to achieve pre-defined
pharmacodynamic targets, a steady-state concentration (Css) >20mg/L, was then assessed.

We also simulated the following CrCl to determine dose requirements for continuous infusion
after a 35mg/kg loading dose: 20 ml/min/1.73m2, 30 ml/min/1.73m2 and 40 ml/min/1.73m2.

Thirdly, the effect of different weight-based dosing CI regimens on vancomycin
concentrations was simulated. The simulated patients each had a CrCl of 100 ml/min/1.73m2
and received a 35mg/kg loading dose over 180-minutes. The weight-based regimens
simulated were 20 mg/kg/day, 25 mg/kg/day, 30 mg/kg/day, 35 mg/kg/day and 40 mg/kg/day.
The ability of each dosing regimen to achieve pre-defined pharmacodynamic targets, a
steady-state concentration (Css) >20mg/L, was then assessed.
Results

The study included 206 patients, whose demographic details are described in Table 1. Population pharmacokinetic modeling was performed using the concentration data from serum samples. The best base model, using the model building criteria, consisted of a one-compartment linear model with zero order input and combined proportional and additive residual unknown variability. Other models could not be supported as they did not result in an improvement in objective function value or between-subject variability. Between-subject variability was included for both clearance and volume of distribution. The final objective function for the base model was 2817.420.

The covariate that best described vancomycin volume of distribution was TBW. The addition of this covariate reduced the objective function by 6.129 (statistically significant change is 3.84 units). The covariate that best described vancomycin clearance was urinary CrCl normalized to 100ml/min/1.73m2. The addition of this parameter improved the between-subject variability for clearance by 10% and improved the goodness of fit plots. The final population model for vancomycin was represented by Equations 3 and 4:

\[
TVV = (\theta_1 \cdot TBW) \quad (3)
\]

\[
TVCL = (\theta_2 \cdot CrCl/100) \quad (4)
\]

where TVV is the typical value of volume of distribution and TBW is total body weight; and TVCL is the typical value of vancomycin clearance. None of the other covariates statistically significantly improved the model and therefore could not be included.
The values of the parameters for the final model are given in Table 2 and include the 95% confidence intervals for the parameters computed from all bootstrap runs. The population value for clearance of vancomycin was 4.6 L/hr (95% confidence interval 4.1 – 5.2) and for volume of distribution was 1.5 L/kg; (95% confidence interval 1.3 – 1.7) (Table 2).

Figure 1 displays the goodness of fit plots for the final model. Each of the patients contributed 2-3 samples and of the 579 samples included in the analysis, 10 samples had a concentration greater than 2 standard deviations outside that predicted by the model which we considered acceptable given the level of sickness severity and likely pharmacokinetic heterogeneity of the patient cohort. All subsequent dosing simulations were then based on this model. All other visual predictive checks were acceptable and confirmed the goodness of fit of the model. The plots in Figure 1 show that the final pharmacokinetic model describes the measured vancomycin concentrations adequately.

Dosing simulations

A loading dose of at least 35 mg/kg TBW would have been necessary to rapidly achieve vancomycin concentrations > 20 mg/L within few hours from the onset of infusion (Figure 2). Standard loading dose of 15 mg/kg would have resulted in inadequate drug concentrations for the first 24 hours of therapy, despite appropriate maintenance regimen. The respective area under the concentration time curve from 0-24 hours (AUC_{0-24}) for these simulations from 0-24 hours were 5mg/kg – 245 mg.h/L; 15mg/kg – 330 mg.h/L; 20mg/kg – 370 mg.h/L; 25mg/kg – 409 mg.h/L; 30mg/kg – 442 mg.h/L, 35mg/kg – 485 mg.h/L and 40mg/kg – 532 mg.h/L.
Figure 3 describes the impact of different values of creatinine clearances on vancomycin concentrations. In spite of effective loading dose of 35 mg/kg, a daily dose of 35 mg/kg could not keep vancomycin concentrations within target levels if CrCl was 100 ml/min/1.73m2. If patients had even higher CrCl, a larger daily dose would have been necessary to maintain desired drug levels over the first 24 hours of therapy. In case of altered CrCl (50ml/min/1.73m2), 35 mg/kg of daily dose could raise vancomycin levels to concentrations > 30 mg/L within the first 24-48 of infusion (Figure 3). To demonstrate the importance of adequate maintenance doses for maintaining therapeutic exposures, the respective AUCs for these simulations of CrCl from 24-48 hours were 50ml/min – 811 mg.h/L; 100ml/min – 542 mg.h/L; 150ml/min – 387 mg.h/L; 200ml/min – 293 mg.h/L and 250ml/min – 232 mg.h/L.

When simulating lower CrCl values to determine doses to be infused over 24 hours to maintain vancomycin concentrations within the range of 20-25 mg/L, the simulations suggested the following requirements: 7mg/kg over 24 hours when the CrCl was 40 ml/min/1.73m2, 10mg/kg over 24 hours when the CrCl was 30 ml/min/1.73m2, 14mg/kg over 24 hours when the CrCl was 40 ml/min/1.73m2.

Figure 4 describes the vancomycin concentrations resulting from various weight-based dosing infusions after an adequate 35mg/kg loading dose to rapidly achieve a target concentration of 20 mg/L. The simulations show that a dose of at least 35mg/kg is required to maintain a therapeutic concentration for a patient with a CrCl of 100ml/min/1.73m2. The respective AUCs for these simulations of CrCl from 24-48 hours were 20mg/kg – 362 mg.h/L; 25mg/kg – 419 mg.h/L; 30mg/kg – 475 mg.h/L, 35mg/kg – 532 mg.h/L and 40mg/kg – 589 mg.h/L.
Discussion

This paper has provided a rational approach for optimized vancomycin dosing by continuous infusion in critically ill patients, and is the largest pharmacokinetic study on vancomycin in this setting. Our results show that a loading dose based on TBW is mandatory to rapidly achieve therapeutic concentrations, and suggest that a minimum loading dose of 35 mg/kg is necessary to achieve target steady state concentrations of 20 mg/L or greater. To maintain this concentration, the dose to be administered by continuous infusion can be accurately calculated using data from CrCl. A daily dose of at least 35 mg/kg would be necessary to maintain steady-state drug levels in the therapeutic range. Such an approach to dosing will increase the likelihood of achieving vancomycin concentrations associated with improved antimicrobial activity and, potentially, positive clinical outcomes (15, 22).

Achieving pharmacokinetic/pharmacodynamic targets is likely to be very important for optimizing the clinical efficacy of vancomycin. Consensus supports the view that the pharmacokinetic-pharmacodynamic parameter best correlated to the efficacy of vancomycin is the AUC\(_{0-24}\) to minimum inhibitory concentration (MIC; AUC\(_{0-24}\)/MIC) ratio (8, 11, 29). In a retrospective study, Moise-Broder et al., (22) evaluated the relationship between AUC\(_{0-24}\)/MIC and clinical outcomes in patients with MRSA pneumonia. The authors identified that an AUC\(_{0-24}\)/MIC ratio ≥ 350 was associated with clinical success and suggested an AUC\(_{0-24}\)/MIC ≥ 400 as a target predictive of optimal outcomes. On the basis of the results of this study and the frequency with which lung infections occur in critically ill patients, it has been advocated that achieving this pharmacokinetic-pharmacodynamic target of AUC\(_{0-24}\)/MIC ≥ 400 should optimize clinical benefit (6). Although AUC\(_{0-24}\) is not routinely monitored in clinical practice, Jeffres et al. (14), have shown that trough concentrations from intermittent dosing are correlated with AUC and thus are regarded as an appropriate surrogate measure for
the AUC$_{0-24}$ and the most practical method to monitor vancomycin dosing (26, 28). Some studies have successfully described use of a nomogram to guide continuous infusion dosing (24).

We have shown dosing to meet these targets needs to be individualized according to the patient’s TBW and renal function. Data supporting the strong relationship between vancomycin volume of distribution and TBW has been described in various vancomycin pharmacokinetic studies, particularly in obese patients (1). Data supporting the importance of renal function on vancomycin clearance are also prominent (25). Augmented renal clearance is common in hyperdynamic critically ill patients and may increase the risk for subtherapeutic vancomycin exposure (27, 31). This population analysis extends upon this previous data and demonstrates how both TBW and CrCl explain a significant amount of the pharmacokinetic variability in critically ill patients.

Curiously, we did not observe an effect of the level of sickness severity on volume of distribution as has previously been described for aminoglycosides (20). We believe this may be due to the dominant contribution of TBW as well as inherently larger volume of distribution of vancomycin (0.8-1.4 L/kg (19)) compared with aminoglycosides (~0.3 L/kg (20)).

There are some limitations of our study. Firstly, this modeling approach utilized sparse samples, such that we were not able to describe a two compartment model, which mechanistically would be more in keeping with the pharmacokinetics of vancomycin. However, use of the program NONMEM for this modeling process is widely recognized to be robust for such analyses and the predictive performance of the model was deemed sufficient.
Secondly, this was an analysis of retrospective data which may have resulted in unforeseen errors in data collection. We believe that this effect would be very minor because of the use of continuous infusion of vancomycin and sampling after a pharmacokinetic steady-state had been reached, in addition to the accuracy of the data collected on CrCl. Thirdly, the suggested approach to dosing should only be used in patients that match the demographic and clinical characteristics of the enrolled cohort. Therefore, it cannot be used for patients requiring different types of renal replacement therapies and should be used with caution in obese patients and those with low creatinine clearances. Finally, the simulations suggest more aggressive doses than are typically prescribed and therefore any prospective validation study would need to closely monitor for potential vancomycin toxicities to confirm that these are not increased in frequency by this approach to dosing.

In conclusion, dose optimization of vancomycin by CI can be best accomplished using a rational approach that considers individual patient and disease characteristics. Specifically, TBW should be considered for initial dosing as it is an accurate descriptor of volume of distribution of vancomycin. Maintenance dosing can then be guided by CrCl. Such an approach to administration of vancomycin by CI can increase the likelihood of achieving therapeutic concentrations, and reduce the possibility of sub-therapeutic drug exposure. Recommended loading and daily dose would result in insufficient drug concentrations during the early phase of sepsis, and higher doses should be used in this setting. We would advocate that a clinical study be undertaken to validate the findings of these simulations.
Figure and Table Legends:

Figure 1: Diagnostic plots for the final population pharmacokinetic covariate model. Left panel describes the observed concentrations versus the population predicted concentrations ($r^2 = 0.07$). The right panel describes the observed concentrations versus the individual predicted concentrations ($r^2 = 0.60$). The non-linear regression line of fit is shown with the solid black line and the line of $x = y$ is the grey dotted line.

Figure 2: The effect of loading dose on rapid attainment of target vancomycin concentrations. Different weight-based doses are simulated for a critically ill patient with a creatinine clearance of 100ml/min/1.73m2, followed by administration as a 35 mg/kg per day continuous infusion.

Figure 3: The effect of creatinine clearance on vancomycin concentrations administered by continuous infusion (35 mg/kg per day after 35mg/kg loading dose).

Figure 4: The effect of different doses (mg/kg) on vancomycin concentrations administered by continuous infusion after 35mg/kg loading dose in a patient with a creatinine clearance of 100ml/min/1.73m2.

Table 1: Demographic and Clinical Characteristics of Patients. Data are described as mean (\pm standard deviation)

Table 2: Bootstrap parameter final estimates of the final covariate model
Figure 1: Diagnostic plots for the final population pharmacokinetic covariate model. Left panel describes the observed concentrations versus the population predicted concentrations ($r^2 = 0.07$). The right panel describes the observed concentrations versus the individual predicted concentrations ($r^2 = 0.60$). The non-linear regression line of fit is shown with the solid black line and the line of $x = y$ is the grey dotted line.
Figure 2: The effect of loading dose on rapid attainment of target vancomycin concentrations. Different weight-based doses are simulated for a critically ill patient with a creatinine clearance of 100 ml/min/1.73 m², followed by administration as a 35 mg/kg per day continuous infusion.
Figure 3: The effect of creatinine clearance on vancomycin concentrations administered by continuous infusion (35 mg/kg per day after 35 mg/kg loading dose.)
Figure 4: The effect of different doses (mg/kg) on vancomycin concentrations administered by continuous infusion after 35mg/kg loading dose in a patient with a creatinine clearance of 100ml/min/1.73m².
Table 1: Demographic and Clinical Characteristics of Patients. Data are described as mean (+ standard deviation) or median (interquartile range)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58.1 ± 14.8</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>74.8 ± 15.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171 ± 8</td>
</tr>
<tr>
<td>Body Mass Index (kg/m^2)</td>
<td>25.9 ± 5.4</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>61.6</td>
</tr>
<tr>
<td>Creatinine Clearance (ml/min/L.73m^2)</td>
<td>90.7 ± 60.4</td>
</tr>
<tr>
<td>APACHE II Score</td>
<td>21 (16-27)</td>
</tr>
<tr>
<td>SOFA Score</td>
<td>7.6 ± 4.2</td>
</tr>
</tbody>
</table>

* APACHE – Acute Physiology and Chronic Health Evaluation; SOFA – Sepsis Organ Failure Assessment
Table 2: Bootstrap parameter final estimates of the final covariate model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL (L/h)</td>
<td>4.58</td>
<td>4.09 - 5.19</td>
</tr>
<tr>
<td>Volume of distribution (L/kg)</td>
<td>1.53</td>
<td>1.31 - 1.71</td>
</tr>
<tr>
<td>Random effects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between-subject variability ΩBSV (coefficient of variation %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>38.9</td>
<td>28.3 - 55.6</td>
</tr>
<tr>
<td>Volume of distribution</td>
<td>37.4</td>
<td>16.6 - 54.9</td>
</tr>
<tr>
<td>Random error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual unexplained variability (coefficient of variation %)</td>
<td>19.9</td>
<td>14.5 - 24.6</td>
</tr>
<tr>
<td>SD (mg/L)</td>
<td>2.4</td>
<td>1.3 - 3.0</td>
</tr>
</tbody>
</table>
References

