Current Prospects for the Fluoroquinolones as First-Line TB Therapy

Howard Takiff* and Elba Guerrero

Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela

Running title: Quinolones as First-Line TB therapy

* Corresponding author: Howard Takiff, htakiff@ivic.gob.ve
Laboratorio de Genética Molecular
Centro de Microbiología y Biología Celular
Instituto Venezolano de Investigaciones Científicas, (IVIC)
Km. 11, Carr. Panamericana
Caracas, 1020A, Venezuela
Tel. 58.212.504.1439
Fax. 58.212.504.1499
Abstract:

While fluoroquinolones (FQ) have been successful in helping cure Multi-Drug Resistant tuberculosis, studies in mice have suggested that if used as first-line agents they might reduce the duration of therapy required to cure drug-sensitive TB. The results of phase II trials with FQs as first-line agents have been mixed, but in at least three studies where moxifloxacin substituted for ethambutol there was an increase in the early percentage of sputa that converted to negative for bacilli. Phase III trials are in progress to test the effectiveness of four-month FQ-containing regimens, but there is concern that the widespread use of FQs for other infections could engender a high prevalence of FQ resistant TB. However, several studies suggest that despite wide FQ use the prevalence of FQ-resistant TB is low, and the majority of the resistance is low-level. The principal risk for resistance may be when FQs are used to treat nonspecific respiratory symptoms that are in fact TB, so curtailing this use of FQs could reduce the development of resistance and also the delays in TB diagnosis and treatment that have been documented when a FQ is given in this setting. While the future of FQs as first-line therapy will likely depend upon the results of the on-going Phase III trials, if they are to be effectively employed in high TB-burden regions their use for community-acquired pneumonias should be restricted, the prevalence of FQ resistant TB should be monitored, and the cost of the treatment should be comparable to that of current standard drug regimens.
There are two main problems with TB chemotherapy, and the fluoroquinolones may be able to help with both. First, although the total duration of treatment has been reduced from 18 – 24 months to 6 months by the systematic use of rifampicin and pyrazinamide, such a 6-month duration is still very long for patients and burdensome for health services in numerous highly endemic countries, and can lead to the second problem, the development of strains resistant to the drugs. The success of the fluoroquinolone antibiotics in treating strains that are resistant to the standard first-line drugs has led to the suggestion that if used as first-line therapy they may be able shorten the duration of treatment. However, excitement over this possibility is tempered by the fear that their widespread community use for other infections will engender a high prevalence of FQ resistant TB strains in the population.

FQs: high hopes but also high rates of resistance.

The quinolones are synthetic molecules that got their start when nalidixic acid was discovered in 1962(46) and then introduced into clinical use in 1967 for treating Gram negative urinary tract infections (25). The addition of a fluorine atom significantly increased their antibacterial activity, and by adding varied side groups literally thousands of different fluoroquinolones were synthesized. Although the increased broad-spectrum activity of ciprofloxacin (CIP) created the expectation that it would be a valuable agent against troublesome bacteria such as *Staphylococcus aureus*, resistance in these bacteria developed rapidly. Within just a few years after the introduction of CIP, many nosocomial strains(8) were resistant(9), especially Gram positive bacteria. In contrast, CIP has remained effective much longer against some enteric Gram-negative bacteria, such as *Escherichia coli*(48). The difference appeared to
be related to the ratio of the usual serum drug concentration to the innate MIC of the bacteria. The MICs for CIP of many Gram-positive bacteria, such as *S. aureus*, are ≥ 0.25 ug/ml, about four times higher than the MIC for *E. coli*. Studies *in vitro* have shown that as the FQ concentration increases, the frequency at which FQ resistant colonies appear decreases, eventually reaching a “mutant prevention concentration,” (MPC) well above the MIC, at which resistant colonies are quite rare (< 1 in 10^{9-10} bacteria)(5, 22).

FQs play an important role in the treatment of MDR-TB

When multi-drug resistant TB (MDR-TB – tuberculosis resistant to at least isoniazid and rifampicin) appeared in the early 1990’s, clinicians reached for the popular fluoroquinolone at the time, CIP(75). Resistant strains appeared rapidly, which could have been predicted from *in vitro* studies showing that resistant colonies can be isolated at relatively high frequencies ($\sim 10^{-7}$) (78) at the usual serum concentration of ~ 2 ug/ml, which is only about 2 x the MIC for *M. tuberculosis*. However, CIP was worse than just ineffective(6), because while it contributed little to curing TB(71), it selected for strains that were also resistant to other, more active FQ(34).

When treatment of MDR-TB began to include the newer FQs ofloxacin (OFX) or its L-isomer levofoxacin (LVX), the only active part of this racemate, they were shown to be a significant factor in curing patients (13, 60, 76, 94). The better efficacy of these drugs over CIP appears to be somewhat complex, involving higher MPC’s, better pharmacokinetics and better intra-macrophage penetration(71). There are other FQs with lower MICs for tuberculosis, often with a methoxy group at the C8 position(65), but some of the most active were found to be too toxic for widespread use: sitafloxacin and sparfloxacin are phototoxic(18) and the promising gatifloxacin (GAT) caused problems with hypo and hyperglycemia, especially in older
patients. That left moxifloxacin (MOX) as the best hope for an expanded FQ role in treating TB (28), although clinical trials are still on-going with GAT (37) (Table 2).

FQs as first-line anti-TB agents: can they reduce the duration of therapy?

The effectiveness of the FQ *in vitro* (69), their early sterilizing effect in mice and humans (43, 62) and their success in treating MDR-TB all raised the hope that as first-line drugs they might be able to reduce the duration of therapy. This would cut down the number of required clinic visits and the burden on the health care system, and could also decrease the percentage of patients who fail to complete the full course of treatment and are therefore more likely to relapse and develop drug resistance. Previous attempts to reduce the duration of therapy to four months using the standard drugs resulted in unacceptably high rates of relapse (23, 72).

Studies in a mouse model of TB tested whether it’s possible to reduce the duration of therapy for pan-sensitive TB by incorporating MOX into a first-line regimen. When MOX was added to the standard treatment scheme of two months of rifampicin, isoniazid, ethambutol and pyrazinamide followed by four months of rifampicin and isoniazid, there was no improvement in the time it took to eliminate viable bacilli from the lung and spleen. When MOX was substituted for either rifampicin or pyrazinamide, the results were worse. When MOX substituted for isoniazid though, cultures from the lung and spleen converted to negative a month earlier than with the standard drug regimen (56). A subsequent study compared two months of rifampicin, isoniazid and pyrazinamide followed by four months of rifampicin and isoniazid, to the same regimen but with MOX in place of isoniazid. With the isoniazid regimen, the full six months of treatment were required to cure mice infected with *M. tuberculosis*, but with MOX and rifampicin, lasting cure could be achieved after only four months, with the addition of pyrazinamide required only for the first month (57).
There have been several clinical trials to see if FQ’s would be similarly effective against human TB (Table 1). Initial studies substituting OFX for ethambutol (44), or simply adding LVX to the standard regimen (24) did not improve results, but recent studies have used the more active MOX. A study adding MOX to the conventional TB drug regimen (90) found an increase in sputum conversion to negative at six, but not at eight weeks, and an overall shorter medium time to sputum conversion. Based on the success in the mouse model, a trial substituted MOX for isoniazid, but this achieved only a small, statistically non-significant increase in sputum conversions at eight weeks(21). There were, however, problems in the design and execution of this multicenter study, so it may not have provided an adequate assessment.

Studies substituting MOX for ethambutol have been more encouraging (Table 1). One study found that MOX improved sputum conversion at 4 and 6-weeks, but there was no difference at 8-weeks. This study also found that dosing 5 times a week instead of 3 produced only a slight, non-significant improvement in sputum conversions at 8 weeks(11). The Phase II OFLOTUB trial tested three FQs against ethambutol and found that MOX was slightly better than GAT in the speed of sputum conversion, and both were better than OFX, which was equivalent to ethambutol(70). At 8 weeks, though, there were no significant differences in the percentage of sputum conversions. It was also noted that more sputa are found to be negative when cultured on solid media than in liquid media.

These two studies showed that MOX is superior to ethambutol at early bacterial killing, and a subsequent study found that MOX was also significantly better than ethambutol at achieving sputum conversion to negative at the critical 8-week mark(16, 90). Because sputum conversion at 8-weeks is regarded as indicating the likelihood of cure after completing therapy(54, 67), these results were proposed as evidence that MOX has the potential to reduce
the duration of first-line TB therapy(54, 67). In the 1970’s the introduction of rifampicin led to a 15 – 20% increase in sputum conversion at 8 weeks, and allowed the duration of therapy to be reduced from 18 months to 9 months. The later introduction of pyrazinamide caused a further 13% increase in sputum conversion at eight weeks, allowing therapy to be reduced from 9 to 6 months.

Although sputum conversion at 8 weeks is not universally accepted as a reliable indicator of cure after completing therapy, there isn’t a more accurate predictive biomarker currently available (58). The only true indicator of effectiveness at present is the absence of recurrence in the months or years after completing therapy. Although most recurrences will likely occur in the first 6-months, monitoring through at least two years after completing treatment is prudent.

These published clinical trials only administered MOX during the two-month intensive phase of treatment and used sputum conversions as an indicator of its capacity to rapidly kill bacilli and thus its potential to shorten the total duration of required therapy. Based on these studies, three trials (Table 1) are currently in progress to test whether four months of a FQ-containing regimen will be as effective as six months of the standard regimen: phase III of the REMox study (http://www.clinicaltrials.gov/ct2/show/NCT00864383?term=tuberculosis+moxifloxacin&rank=3); the RIFAQUIN study(68); and phase III of the OFLOTUB study (http://www.sgul.ac.uk/depts/medmicro/.../OflotubTrialMitchisonLondon07.pdf).

Will widespread community use of FQs limit their effectiveness against TB?
Even if MOX can be shown to effectively shorten the duration of first-line therapy, the threat of resistance is a reason for caution: the history of FQ use against other resistant-prone bacteria, such as *S. aureus*, was marked by the rapid development of resistance(8); a high prevalence of FQ resistant TB has been reported in populations such as Makati City, Philippines (33) and Mumbai, India(2); and the use of FQ as first-line therapy might mean that most MDR stains would show up as FQ resistant, thus eliminating the important contribution of the FQs to curing MDR-TB and perhaps fostering the development of the fearsome XDR-TB(26, 27). Extensively drug resistant tuberculosis, or XDR-TB, is MDR-TB that is additionally resistant to any FQ as well as to any second-line injectable antibiotic --- amikacin, kanamycin or capreomycin.

While some FQ resistant MDR-TB probably results from the unfortunate practice of simply adding a FQ to a failing drug regimen(80), or giving a FQ with a regimen of weaker second line drugs, there is also concern that they may fail as first-line TB drugs because of their success against other infections. In many countries, the FQ account for > 10% of all antibiotics sold (49, 83), and are widely prescribed for common infections at many sites: urinary and gastrointestinal tracts, paranasal sinuses, wounds and sexually transmitted diseases(29). In addition, in many resource-poor countries the FQs are not only frequently prescribed but also freely available without a prescription, as shown in a recent study from Tanzania(82). In a high TB burden country, a significant number of individuals with nascent or undiagnosed TB are likely to take a FQ, which could select for resistance in at least a fraction of the *M. tuberculosis* load they harbor(29).

Resistance can develop after short courses of FQs, but may be less common than feared.
Unexpectedly, a very recent article(83) has shown that despite the wide availability and use of CIP in Tanzania, the prevalence of FQ resistant *M. tuberculosis* was low and not related to a history of having recently taken a FQ. Only two (0.7%) of 291 isolates from newly diagnosed TB patients had FQ resistance, and these were not from the twenty-two (8%) patients who had taken a FQ within the previous six months (Table 2).

The lack of FQ resistance reported in this article seems like it must be an aberration, given the history of the rapid development of FQ resistance in other bacteria and reports such as those from Mumbai, India(2), where the prevalence of FQ resistant TB increased from 3% in 1996 to 35% in 2004, paralleling the rise in general FQ use(2) (Table 2). A report from Baltimore, Maryland found FQ resistance in 2 of 19 (11%) patients exposed to FQ, although one had only borderline resistance(29). A study from Tennessee reported FQ resistance in an alarming 20.8% of patients exposed to FQ for > 10 days, 60 days prior to a TB diagnosis, but in only 1.6% of those taking a FQ for < 10 days(19). A report from Canada found FQ resistance in 3/20 patients exposed to FQ, but all three had received more than one course of a FQ(49).

However, several other studies looking for FQ resistance and its relation to previous FQ exposure found a low prevalence (Table 2). A report from Korea found 2.6% FQ resistance in patients exposed to FQ, but 3.4% in those with no FQ exposure(59). A report from Taiwan found no correlation of FQ resistance with either FQ exposure or duration of FQ exposure, but saw a positive correlation with previous anti-TB treatment and resistance to any other drug(89). A survey from Tunisia found only 0.8% FQ resistance(73). A similar study in Rwanda found only one isolate with FQ resistance (0.2%) out of 616 new TB cases(81), but in the eight cases of MDR-TB previously treated with CIP, three were FQ resistant. A study from South Africa
found gyrase mutations in only 1/201 patients exposed to FQ, but most had very short exposures, 57% for only one day (41).

These reports of low numbers of FQ resistant TB in FQ exposed patients are surprising, as resistance can clearly develop after routine courses of these antibiotics. The patient carrying the one non-MDR-TB Rwandan strain with FQ resistance had received less than 14 days of therapy with OFX for respiratory symptoms, and other studies have described FQ resistance developing after taking a FQ for only 8(41) and 13 days (29, 31). When a patient presents with respiratory symptoms, it’s common for the physician to prescribe 7 – 14 days of a broad-spectrum antibiotic, often a FQ, and only order a TB smear if they fail to improve. In fact, the Infectious Disease Society of America(52) recommends using a FQ for community-acquired pneumonias in older patients or those with other complicating illnesses, such as diabetes. If the patient actually has TB, they will effectively be receiving FQ monotherapy(30). A very recent investigation found that TB patients who also have chronic obstructive pulmonary disease (COPD) have an increased risk of having FQ resistant TB, presumably because they were treated with FQs for symptoms thought to be related to their COPD(47). A study that looked at isolates from sputa taken both before and after a course of FQ given for nonspecific respiratory symptoms found that 1 of 18 patients (5.5%), developed FQ resistance, after taking a FQ for only 7-days(88).

Gyrase mutations confer FQ resistance, but some may be treatable with MOX or newer quinolones.

Curiously, the two FQ resistant strains described in the study from Tanzania(83) were found in patients with no history of recent FQ exposure. One of the two strains was resistant to
CIP but only intermediately resistant to MOX, and had a valine substitution for the alanine at GyrA amino acid 90. This substitution was also reported in two other studies that each found a single strain with a gyrase mutation (42, 49). The fluoroquinolones inhibit the DNA gyrase (53), and ~50 – 90% (39, 89, 92) of FQ resistant strains have mutations in the gyrA gene that result in substitutions in amino acids, 91 or 94 (95) of the GyrA subunit. Less common substitutions have been reported in amino acids 88 (31), 74 (45), and 80, but the association of substitutions in amino acid 80 with FQ resistance has been questioned (7, 87). Substitutions in the other gyrase subunit, GyrB, have been found in up to 10% of FQ resistant isolates of M. tuberculosis (17), but generally confer low-level resistance that may be susceptible to treatment with high dose MOX (63).

It was previously observed that strains with the GyrA Ala90Val substitution, such as the Tanzanian strain (83), are only intermediately resistant to MOX (7) and studies in mice suggest that MOX might even contribute to the cure of XDR-TB strains with this mutation (63). A recent study found that the novel isothiazoloquinolone ACH-702 had even better activity than MOX against strains with this substitution and also inhibited a strain with a substitution at amino acid 94 (64), the most commonly mutated site. Unfortunately there is no isothiazoloquinolone currently suitable for clinical use, but other new quinolones have been described that may be more active against TB than MOX (3). While it was thought that once a strain has a GyrA mutation it is resistant to all FQs, this may not be true for all GyrA mutations, nor for all quinolones (51).

FQ resistance without gyrase mutations.
The other FQ resistant strain in the Tanzanian study(83) was isolated from an HIV-positive patient with very low CD4 cells. It had no gyrase mutation, was only intermittently resistant to CIP (MIC 1 ug/ml) and was sensitive to MOX. Studies screening for FQ resistance have found that up to 50% or more FQ resistant strains don’t have gyrase mutations(39, 49, 89). Work *in vitro* has shown that low-level FQ resistance in mycobacteria can be caused by efflux pumps such as antiporters LfrA(77) and Tap(1, 4), as well as the ATPase complex Rv2686c-Rv2687c-Rv2688c(61). It was also recently reported that the MICs for OFX rise due to the induced expression of efflux pumps when *M. tuberculosis* is exposed to rifampicin (50), and also when *M. marinum* enters macrophages (1). Perhaps the role of efflux pumps in the development of both tolerance and resistance to the FQ may be more important than has been appreciated.

Increased expression of the conserved mycobacterial pentapeptide MfpA also causes FQ resistance *in vitro* (85), similar to the resistance conferred by the plasmid-born Qnr pentapeptide proteins in Gram-negative bacteria(74). However, no non-gyrase mutation has yet been documented to be responsible for FQ resistance in clinical isolates of *M. tuberculosis*, so the mechanisms involved in “resistant” isolates with unmutated gyrases, and their clinical importance, are unclear. However, as FQ resistance develops in a step-wise fashion, low-level resistance may allow the strains to grow near the end of the dosing interval or with poor compliance and accumulate additional mutations, such as a first or a second mutation in *gyrA*(87) that result in high-level resistance(22) not susceptible to even the most active quinolones.

In terms of the MPC paradigm(22), the presence of even a low-level first mutation could raise the MPC above the obtainable or toxic tissue drug concentration for MOX, making additional mutations likely. The MPC concept is based on mutation frequencies derived from *in*
vitro bacteria exposed only to a FQ, and the frequencies would presumably be lower when the FQs are given together with other effective drugs, such as rifampicin and pyrazinamide. However, it seems that FQ resistance can develop in the context of multi-drug therapy, as shown by several studies that found an association between resistance to FQs and resistance to any drug and especially multi-drug resistance (Table 2). It’s possible that the frequent development of FQ resistance during the treatment of MDR-TB could be a result of the other second-line drugs used being less effective than rifampicin and pyrazinamide, and in addition some strains develop resistance to them.

Studies looking at the FQ MICs of many pan-susceptible clinical isolates have found something approximating a bell-shaped distribution, with 8-fold differences in the MICs of “sensitive” strains(6). Perhaps some strains with low-level resistance, which is often just above the resistance-defining cutoff, in patients without previous FQ exposure simply represent the high MIC tail of this distribution. The reasons for these MIC differences, their clinical significance and relationship to the development of higher level FQ resistance are all unknown. Alternatively, it’s possible that reporting or memory error was a factor in some of the surveys of FQ resistance, and the patients or the people from whom they contracted the disease had actually taken a FQ. It’s also conceivable that the low-level, non-gyrase resistance found in some strains was not present in the original isolates, but rather the result of spontaneous mutations selected when the strains were plated on FQ containing media as part of the resistance testing. It’s therefore important to use a quantitative assay such as the proportion method, but the interpretation can be complicated by the phenomenon of heteroresistance, where resistance is present in a minority greater than 1% of colonies, or PCR of the gyrA gene amplifies both...
mutated and unmutated sequences. This is presumed to be due to emerging resistance or infection with multiple strains.(84)

Giving a FQ for non-specific respiratory symptoms delays TB diagnosis and therapy.

If the use of FQs for nonspecific respiratory symptoms or presumptive community acquired pneumonia could be curtailed, it would reduce concerns about the development of FQ resistant TB, but would also have additional benefits. Several studies have shown that taking > 5 days of a FQ in the previous months results in delays of two to five weeks in initiating anti-TB therapy(14, 20, 32, 96). OFX, LVX or MOX taken for respiratory symptoms that are actually TB will kill off some of the bacilli and may result in a transient improvement, but when the patient returns with a recrudescence of the symptoms there will be fewer bacilli, which means that sputum smears are more likely to be negative(41) and the sputum cultures will take longer to turn positive. Consequently, in the elderly or patients with complicating illnesses such as diabetes, taking a FQ in the months prior to TB diagnosis has been associated with increased mortality(88).

Summary: cautious optimism on the future of quinolones as first-line anti-TB therapy

What then is the future for the FQs in the treatment of TB, beyond their current importance in the treatment of MDR-TB? While four studies showed that MOX improved early bacterial killing, only one(16) showed a statistically significant improvement in the percentage of sputa that had converted to negative at eight weeks (Table 1). If early sputum conversion, particularly at eight weeks, is a reliable indicator of cure, there is some enthusiasm that first-line treatment containing MOX may be able to cure pan-sensitive TB in less than six months, perhaps
with ethambutol reserved for treating MDR strains. As the FQs are bacteriocidal, while ethambutol is only bacteriostatic, they may be more effective at preventing the spontaneous emergence of MDR-TB, especially in isoniazid mono-resistant strains(15). However, without proven biomarkers, the true effectiveness of a MOX containing shorter treatment regimen cannot be evaluated until at least six to twelve months after patients in phase III trials complete therapy. The lack of a significant improvement when MOX was substituted for isoniazid was a disappointment, but another evaluation is currently in progress (Table 2). There are also other new anti-TB drugs in clinical trials, and preliminary studies have suggested that if these were combined with MOX it might be possible to further shorten first-line therapy, or perhaps reduce the duration of treatment required to cure multi-resistant strains (55, 86, 91).

A high prevalence of FQ resistant TB has likely voided the possibility of first-line FQ treatment in some communities(2), but it might still be viable in areas with a low prevalence of FQ resistant TB, such as Tanzania, where the widespread availability and use of FQs for other infections has not led to a high prevalence of FQ resistant TB. While such reports are encouraging, caution still seems warranted in light of documented cases of FQ resistance developing after taking a FQ for as few as 7(88) – 8(41) days.

It appears that limited FQ exposures may select predominantly for low-level resistance that may be treatable with high dose MOX(63) or a future, highly effective quinolone(64): the strains either lack gyrA mutations(49, 89); have the Ala90Val substitution(41) – the mutation yielding the lowest resistance of all common GyrA mutations(49, 87); have the Thr80Ala GyrA substitution not clearly related to FQ resistance(7, 81); or have a mutation in gyrB(89). It’s worrisome though, that some of these low-level resistant strains were unexplainably found in patients with no history of FQ exposure(59, 83). If susceptibility tests use CIP or OFX, the
strains judged to be resistant to these drugs may still be sensitive to MOX, and clinical outcomes, even with XDR-TB, may improve if MOX is included in the drug regimen (40).

If a MOX-containing shorter course is proven effective, its implementation might be recommended only where the prevalence of FQ resistant TB is low and FQs are not routinely used for nonspecific respiratory symptoms. Curtailing the use of FQs to treat respiratory symptoms when TB cannot be effectively excluded by keen clinical judgment or a highly sensitive diagnostic test (35), would reduce concerns about the development of resistance and also eliminate the delays in initiating TB therapy that occur when FQs are inadvertently administered as TB monotherapy(14).

The downside: some reasons for not using FQs as first-line agents.

There are a few negative aspects that need to be considered before a FQ-containing first-line regimen could be broadly recommended. The FQs are fairly good drugs for common nonspecific respiratory syndromes and community acquired pneumonia, and eliminating this usage to insure they remain effective as first-line TB therapy may not prove beneficial to all-cause morbidity and mortality at the community level. Also, using FQs as standard first-line therapy would reduce their effectiveness against MDR-TB, and could perhaps result in the appearance of more XDR-TB. Finally, the cost of the FQs must be considered. In developing countries the standard drug regimen of rifampicin, isoniazid, ethambutol and pyrazinamide can cost less than $20 for the entire six-month treatment, which is about the current cost of a five-day course of MOX. Even though an effective shorter course of TB therapy would reduce the burden on health care infrastructure, unless the price of a MOX-containing regimen is relatively comparable to
that of the standard drug regimen, a cost-benefit analysis is not likely to justify its implementation in the resource poor countries where most of the world’s TB occurs.

Acknowledgments

The authors thank the organizers of the 2011 World TB Day Conference at the Institute of Tropical Medicine, Antwerp, Belgium for inviting HT to review and present the topics in this paper, Dr. Stephen Gillespie for his helpful comments at that event, and Dr. Michael Cynamon for critically reading the manuscript.

Funding

This work was funded by FONACIT (Fondo Nacional de Ciencia, Tecnología y Innovación) Projects G-2005000393 and 20010001851, and by Helmerich & Paine de Venezuela, C.A. through LOCTI (Ley Orgánica de Ciencia, Tecnología y Innovación) project “Las Cepas de Tuberculosis Mas Virulentas de Venezuela,” Cuba-Venezuela Project #689, LOCTI project “Tuberculosis en Venezuela: diagnóstico, epidemiología, genética y resistencia a drogas,” and CYTED grant 207RT0311

Transparency declaration of competing interests:

None to declare

References

<table>
<thead>
<tr>
<th>STUDY</th>
<th>SITE</th>
<th>COMPARISONS</th>
<th>Experimental Regimens</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohno</td>
<td>Nagasaki</td>
<td>OFX vs. ethambutol</td>
<td>9EHR</td>
<td>No significant differences</td>
</tr>
<tr>
<td>1992(44)</td>
<td></td>
<td>daily for 9 months</td>
<td>9OHR</td>
<td>OFX = ethambutol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFX 0.6 g/d X 2 months then 0.3 g/d x 7 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Sadr</td>
<td>USA</td>
<td>Pulmonary TB in HIV+ patients</td>
<td>2EHRZ 3x/wk/4RH 2x/wk</td>
<td>No added benefit with</td>
</tr>
<tr>
<td>1998(24)</td>
<td></td>
<td>Add LVX to 4 drug standard regimen</td>
<td>2EHRZ 3x/wk/7RH 2x/wk</td>
<td>Addition of LVX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>daily for 2 wks then 3x/wk</td>
<td>2EHRZL3x/wk/4RH 2x/wk</td>
<td>(Small incr. 2wk sputum conversion)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followed by 18 or 31 weeks Rif/Ihh 2x/wk</td>
<td>2EHRZL 3x/wk/7RH 2x/wk</td>
<td>No differences 6 or 9 month courses</td>
</tr>
<tr>
<td>TRC</td>
<td>Chennai</td>
<td>OFX vs. ethambutol in</td>
<td>3OHRZ</td>
<td>Three month intensive phase</td>
</tr>
<tr>
<td>2002(79)</td>
<td>South India</td>
<td>Daily intensive phase for 2 or 3 months</td>
<td>3OHRZ/1HR 2x/wk</td>
<td>and at least one month continuation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>followed by by RH 2x/wk</td>
<td>3OHRZ/2HR 2x/wk</td>
<td>are necessary to avoid > 4% relapse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 0, 1 or 2 months</td>
<td>2OHRZ/2HR 2x/wk</td>
<td></td>
</tr>
<tr>
<td>Burman</td>
<td>Africa</td>
<td>MOX vs. ethambutol</td>
<td>2EHRZ 5x/wk/4HR</td>
<td>MOX improved sputum</td>
</tr>
<tr>
<td>2006(11)</td>
<td>USA</td>
<td>5x/wk for first 2 weeks</td>
<td>2EHRZ 3x/wk/4HR</td>
<td>conversion at 4 and 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Then 3 or 5 doses per week</td>
<td>2MHRZ 5x/wk/4HR</td>
<td>No difference at 8 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for total of 8 weeks</td>
<td>2MHRZ 3x/wk/4HR</td>
<td>5x/wk not better than 3x/wk</td>
</tr>
<tr>
<td>Rustomjee</td>
<td>KwaZulu</td>
<td>Ethambutol vs OFX, GAT or MOX</td>
<td>2EHRZ/4HR</td>
<td>MOX accelerated early killing,</td>
</tr>
<tr>
<td>2008(70)</td>
<td>Natal</td>
<td>6x/wk</td>
<td>2OHRZ/4HR</td>
<td>MOX > GAT >OFX = ethambutol</td>
</tr>
<tr>
<td>OFLOTUB</td>
<td>South Africa</td>
<td>phase II</td>
<td>2GHRZ/4HR</td>
<td>Differences in sputum conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2MHRZ/4HR</td>
<td>not significant at 8 weeks</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Regimen</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Conde</td>
<td>Brazil</td>
<td>Ethambutol vs MOX</td>
<td>MOX improved sputum conversion from 1 thru 8 weeks</td>
<td></td>
</tr>
<tr>
<td>2009(16)</td>
<td></td>
<td>5x/wk for 2 month intensive phase 2x/wk for 4 month continuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorman</td>
<td>USA</td>
<td>Isoniazid vs. MOX 5x/wk</td>
<td>No differences in 8-week conversions</td>
<td></td>
</tr>
<tr>
<td>2009(21)</td>
<td>Brazil, Spain, South Africa, Uganda</td>
<td>2EMRZ/4HR</td>
<td>Logistical problems with multi-site study</td>
<td></td>
</tr>
<tr>
<td>Wang</td>
<td>Taiwan</td>
<td>Standard regimen vs Standard regimen plus MOX</td>
<td>MOX: shorter median time to sputum conversion and higher 6-week conversion rate</td>
<td></td>
</tr>
<tr>
<td>2010(90)</td>
<td></td>
<td>2EMRZ/4HR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMox</td>
<td>Asia</td>
<td>MOX substituted for either ethambutol or isoniazid and given for 4 months total therapy</td>
<td>In Progress</td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>2EMRZ/4HR*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIFAQUIN</td>
<td>Southern Africa</td>
<td>MOX substituted for isoniazid for 2 months, then given with rifapentine twice weekly for 2 months or once weekly for four months</td>
<td>In Progress</td>
<td></td>
</tr>
<tr>
<td>(68)</td>
<td></td>
<td>2EMRZ/4HR*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFLOTUB</td>
<td>Africa</td>
<td>GAT substituted for ethambutol for 2 months then added to HR for 2 months (adults < 65 without history of diabetes or abnormal blood glucose)</td>
<td>In Progress</td>
<td></td>
</tr>
<tr>
<td>Phase III</td>
<td></td>
<td>2GHRZ/2GHR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Standard Control Regimen = 2EHRZ/4HR; (2 months EHRZ/4 months HR). Results in **bold** indicate better outcomes with MOX.

E = ethambutol; H = isoniazid; R = rifampicin; Z = pyrazinamide; M = moxifloxacin; G = gatifloxacin; L = Levofloxacin; a
<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Population</th>
<th>Findings</th>
<th>Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riantawan 1998 (66)</td>
<td>Thailand</td>
<td>Cardiothoracic Center</td>
<td>Initial Resistance to OFX: 1.1% of 1738 new cases pulm. TB Acquired resistance to OFX: 8.1% of 123 Prev. treated</td>
<td>Not studied</td>
</tr>
<tr>
<td>Casal 2000 (12)</td>
<td>Spain</td>
<td>Hospital strains</td>
<td>213 strains susc. and resist. to other drugs MIC OFX: 1 ug/ml - 22%; 2 ug/ml - 6.1%</td>
<td>Not studied</td>
</tr>
<tr>
<td>Hemvani 2001(36)</td>
<td>Centr. India</td>
<td>Hospital lab isolates</td>
<td>1426 strains. CIP resistance - 3.6%</td>
<td>Not studied</td>
</tr>
<tr>
<td>Grimaldo 2001 (33)</td>
<td>Spain</td>
<td>Hospital isolates</td>
<td>FQR with no other resistance: 1989-94, CIPR/OFXR, 0/1%; 95-2000, CIP/OFX 17:4:24:44, Initial Resist. CIP/OFX 1830% FQR MDR: '99-94, CIP/OFX 103:24%; '95-00, 51.4% both</td>
<td>Not studied</td>
</tr>
<tr>
<td>Ginsburg 2003 (29)</td>
<td>Baltimore</td>
<td>Newly Diagnosed TB patients</td>
<td>FQR: w/o FQ in prev. 6 months, 0/36. w FQ, 2/19, both AIDS CD4<50: 1) 6 d LVX + 7 d CIP 2) 3 courses GAT 1) Resist.to all FQ: GyrA G88C 2)Intermed. Resist not studied</td>
<td></td>
</tr>
<tr>
<td>Bozeman 2005 (10)</td>
<td>USA</td>
<td>Trial strains (RiS) Strains referred to CDC</td>
<td>1996 - 2000: 33/1852 (1.8%) CIPR, 25/33 (75.8%) in MDR 26/30 had GyrA substitutions 4/30 no GyrA substitutions</td>
<td></td>
</tr>
<tr>
<td>Huang 2005 (39)</td>
<td>Taiwan</td>
<td>Tertiary Hospital 1995 - 2003</td>
<td>FQR in pan-sensitive strains '95 - '97<2%; In MDR: '97, 8%; '98 - '03, 20%. Of 10 FQR: 1 A90V, 3 D94G; 1 G88A/D94Y, 5 GyrA WT, all GyrBWT</td>
<td>Not studied</td>
</tr>
<tr>
<td>Wang 2006 (88)</td>
<td>Taiwan</td>
<td>Newly Diagnosed TB patients</td>
<td>9 patients with isolates before and after FQ One developed resistance to OFX</td>
<td>Not studied</td>
</tr>
<tr>
<td>Park 2007 (59)</td>
<td>Seoul</td>
<td>From records of hospital microbiology</td>
<td>FO ex: OFXR in 1/39, but was primary MDR-TB OFXR in 1.1% of newly dx'd patients, 8.5% in retreated pts.</td>
<td>Not studied</td>
</tr>
<tr>
<td>Umubyeyi 2007 (81)</td>
<td>Rwanda</td>
<td>Resistance survey</td>
<td>In 616 new cases, 1 OFXR, received ≤14 d FQ for Resp. Sxs. In 32 MDR, 3 OFXR, all received CIP as prior TB Rx 1 GyrA D94A 3 GyrA T80A</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Studies reporting prevalence of FQ resistance in non-MDR-TB
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Setting</th>
<th>Patients Characteristics</th>
<th>Resistance Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang 2007</td>
<td>Taiwan</td>
<td>Randomly selected isolates from tertiary facility</td>
<td>420 isolates: 14 FQR (3.3%); No assn. w/ previous FQ; Assn. with previous TB Rx and any other drug resistance 28 FQs strains: no mutations</td>
<td>4 FQR: GyrA: 1 D94G, 1 A90V GyrB: 1 N53MD 8 WT GyrAB: lower avg. MICs</td>
</tr>
<tr>
<td>Agrawal 2009</td>
<td>Mumbai, India</td>
<td>Tertiary facility strains with DST requested</td>
<td>1995-2004, MDR increased from 32% to 56% CIPR (8 ug/ml) from 0% to 35%</td>
<td>Not studied</td>
</tr>
<tr>
<td>Devasia 2009</td>
<td>Tennessee</td>
<td>TB patients covered by drug benefit plan</td>
<td>37% had FQ; FQ>10 days: FQR in 1/62 FQ>10d: FQR in 7/54 (13%) Most FQR when FQ given > 60 days before TB dx</td>
<td>Not studied</td>
</tr>
<tr>
<td>Long 2009</td>
<td>Canada</td>
<td>TB patients covered by drug benefit plan</td>
<td>428 Patients: 54 with single FQ prescription - No FQ R 20 Patients with multiple FQ prescriptions - 3 FQ R</td>
<td>1 GyrA A90V; 2 WT GyrA MIC CIP >4, All GyrB WT</td>
</tr>
<tr>
<td>Xu 2009</td>
<td>Shanghai</td>
<td>TB reference lab</td>
<td>FQR in 1.9% in pan-sensitive. Assn. FQR with resistance to 1st-line drugs and prior TB Rx</td>
<td>gyrA mutations in 81.5% OFXR strains; mutations not specified</td>
</tr>
<tr>
<td>Soudani 2010</td>
<td>Tunisia</td>
<td>Univ. Hospital All isolates 2005-2008</td>
<td>CIPR (MIC 2 or 4 ug/ml) in 4/495 isolates (0.8%); 3 new cases, one previously treated MDR.</td>
<td>1 GyrA A92M; 1 A90L; 2 WT GyrA; All GyrB WT</td>
</tr>
<tr>
<td>Jeon 2011</td>
<td>S. Africa</td>
<td>Gold Miners</td>
<td>440 TB patients with FQ < 1 yr. prior to TB dx, most 1 day FQ Only looked for gyrA mutations, one with GyrA change</td>
<td>1 GyrA A90V in patient with multiple FQ use, total 8 days</td>
</tr>
<tr>
<td>Hu 2011</td>
<td>Rural East China</td>
<td>Pulm. TB registered patients</td>
<td>FQR in 31/351 strains; Assn. FQR with Rx of resp. illness, Beijing genotype. No assn. with other drug resistance.</td>
<td>17/31 w GyrA substitutions; 3 with two; 1 in GyrB. WT GyrA = Lower FQ MICs</td>
</tr>
<tr>
<td>van den Boogaard 2011</td>
<td>Tanzania</td>
<td>Culture Positive TB patients</td>
<td>291 cultures: No resistance in 22 w FQ in previous 6 months 2 FQ resistant isolates in non FQ exposed patients</td>
<td>1 CIPR, MOX intermediate, GyrA A90V 1 CIP intermediate, MOX; GyrA WT</td>
</tr>
</tbody>
</table>

WT = Wild type--no mutations; w = with; w/o = without; Rx = treatment; dx = diagnosis; Assn = statistical association; R or resist. = resistant; S or susc. = susceptible; FQS = FQ sensitive; FOR = FQ resistant; intermed. = intermediate resistance; pulm. = pulmonary; resp. = respiratory; sxs. = symptoms; DST = drug sensitivity testing; pts = patients; d = day