Pharmacokinetics and Pharmacodynamics of Anidulafungin for Experimental Candida Endophthalmitis: Insights into the Utility of Echinocandins for Treatment of a Potentially Sight-Threatening Infection

Running Title: Anidulafungin for Candida Endophthalmitis

1 The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
2 Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, UK

*corresponding author

William Hope, Department of Molecular and Clinical Pharmacology, Sherrington Building, University of Liverpool, Liverpool, L69 3GE

Email: william.hope@liverpool.ac.uk

Keywords

Anidulafungin, Candida, pharmacokinetics, pharmacodynamics, endophthalmitis, retinitis, chorioretinitis, echinocandin
Acknowledgments

William Hope is supported by a National Institute of Health Research (NIHR) Clinician Scientist Award. Timothy Felton is supported by a Medical Research Council (MRC) Clinical Pharmacology Fellowship. The schematic figures of the eye were drawn by Angela Luck.

Funding: This work was supported, in part, by Pfizer Inc.

Potential Conflicts of Interest

William Hope has given talks, received research grants and served as a consultant to Pfizer.

This work was presented, in part, at the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), London, 2012.
Abstract

Background *Candida* chorioretinitis and endophthalmitis are relatively common manifestations of disseminated candidiasis. Anidulafungin is increasingly used for the treatment of disseminated candidiasis, but the efficacy for *Candida* endophthalmitis is not known.

Methods A non-neutropenic model of hematogenous *Candida* endophthalmitis was used. Anidulafungin 5, 10 and 20 mg/kg was initiated 48 hours post inoculation. The fungal density in the kidney and vitreous humour was determined. Anidulafungin concentrations in the plasma and vitreous humor were measured using high performance liquid chromatography (HPLC). A pharmacokinetic-pharmacodynamic model was used to link anidulafungin concentrations with the observed antifungal effect. The AUC associated with stasis was determined in the both the kidney and the vitreous humor. The results were bridged to humans to identify likely dosages that are associated with significant antifungal activity within the eye.

Results Inoculation of *Candida albicans* resulted in logarithmic growth in both the vitreous humor and the kidney. The pharmacokinetics of anidulafungin were linear. There was dose dependent penetration of the anidulafungin into the vitreous humor. The exposure response relationships in the kidney and vitreous were completely discordant. An AUC of 270 and 100 was required for stasis in the eye and kidney, respectively. The currently licensed regimen results in an AUC for an average patient that is associated with stasis in the kidney, but minimal antifungal activity in the eye.

Conclusions Anidulafungin penetrates the eye in a dose-dependent manner. Higher dosages than those currently licensed are required to achieve significant antifungal activity in the eye.
Introduction

Candida endophthalmitis is a potentially sight-threatening infection that is difficult to treat and can affect any age group (2, 8, 24, 30). A schematic depiction of this syndrome is shown in Figure 1. Endogenous ocular syndromes caused by *Candida* spp. range from infection limited to chorioretinal structures through to involvement of the entire globe. The estimated incidence of endogenous *Candida* endophthalmitis varies tremendously (10, 14, 28). The most common causative fungal pathogen is *Candida albicans*, although a range of *Candida* species have also been documented (10). Despite first being described over 70 years ago, the optimal treatment for this syndrome is unknown.

A number of systemic antifungal agents are available for treatment of *Candida* endophthalmitis, including the triazoles and the polyenes (20). The role of the echinocandins is less certain. The evidence that supports the use of various antifungal agents has been accrued over many years from case reports (see for example (32)) and case series (1)—there are no randomised clinical trials. The Infectious Diseases Society of America (IDSA) guidelines for the treatment of endogenous *Candida* endophthalmitis recommend intravenous amphotericin B deoxycholate 0.7–1 mg/kg daily with or without oral flucytosine 25mg/kg Q6 hrs (20). Adjunctive therapies include vitrectomy with intravitreal injection of antifungal agents. These additional measures may be required if there is extensive vitreal disease, and if there are concerns that poor ocular penetration of antifungal compounds may compromise the antifungal effect and the clinical outcome.

The echinocandins are increasingly considered first-line agents for the treatment of candidemia and invasive candidiasis (20). Anidulafungin is a semisynthetic lipopeptide derived from *Aspergillus nidulans* (7). Based on the results of a randomized clinical trial, this agent is approved in the United States and Europe for the treatment of invasive candidiasis and candidaemia (23). Because *Candida* endophthalmitis can result in devastating visual loss, further information is required to further understand the exposure-response relationships of newer antifungal agents for intraocular infections. Here, we used a rabbit model of endogenous *Candida* endophthalmitis to define the pharmacokinetics and pharmacodynamic relationships for anidulafungin against *Candida* endophthalmitis, and then bridged these results to humans.
Methods

Rabbits

All experiments were conducted under Home Office project licence PPL40/3101 and approved by The University of Manchester’s ethics committee. A previously described and well-validated rabbit model of central nervous system candidiasis and endophthalmitis was used (12, 13, 27, 33). Male New Zealand White rabbits weighing 2-3 kg were used for all experiments. As previously described, a subcutaneous intravenous port (Titanium Soloports; Linton Instrumentation, Norfolk, UK) was used to allow repeated atraumatic venous access for inoculum administration, drug administration and procurement of plasma samples (33). Central venous access was established under general anaesthesia and was performed by Harlan Laboratories UK, Ltd. The line was flushed with 1ml of 0.9% saline, followed by 0.5 mL of wash solution (0.1 mL sodium heparin [5000U/L] plus 9.9 mL 0.9% normal saline), and then locked with 0.1mL lock solution (9ml 5% dextrose with 1ml sodium heparin [5000U/mL]) immediately after use.

Challenge strain

The challenge strain was ATCC MYA1237 (NIH 8621), as has been used previously in this model (12, 13, 33). The minimum inhibitory concentration for the challenge strain was 0.0039 mg/L using both CLSI and EUCAST methodologies. Candida albicans was retrieved from beads stored at -80°C and plated onto Sabouraud agar (Oxoid, UK) and then incubated at 37°C for 24 hours. Several colonies were placed in Sabouraud broth. The desired inoculum (10^6 organisms) was based on previous studies of Candida meningoencephalitis (12, 13, 33), and was designed to induce reproducible infection within the central nervous system and eye. The inoculum was prepared using a hemocytometer and administered as a bolus in 1 mL of phosphate buffered saline (PBS). Food and water were provided to rabbits ad libitum.
Pharmacokinetic and Pharmacodynamic Studies

A total of The experimental period lasted for four days because of death of all control rabbits by 96-hours post infection. Mortality appeared to occur as a result of significant neurological events, including seizures, rather than uncontrolled sepsis. Rabbits were sacrificed at pre-defined time-points throughout the experiment or if neurological symptoms prevented access to food and water. Terminal pharmacokinetic and pharmacodynamics samples were obtained from all rabbits. Rabbits were sacrificed using a lethal dose of i.v. pentobarbital (80mg/kg; Animalcare, Ltd, York, UK), which was administered via the indwelling catheter.

The clinical formulation of anidulafungin was reconstituted in sterile water and further diluted to obtain the desired concentrations. Anidulafungin was administered 48-hours post infection, as has been previously described in this model (33). Anidulafungin was administered over 1-minute via the indwelling catheter. Based on preliminary dose-finding studies, dosages of 5, 10 and 20mg/kg were used. Rabbits in the treatment groups received anidulafungin once or twice at 48 and 72 hours post infection. Experiments were repeated multiple times using a total of 6 rabbits for any one experiment (two rabbits for each dosage), and the results pooled for analysis. The total population of rabbits (n=35) used in these experiments were analysed using a population methodology (see below).

Plasma was collected in the first and second dosing interval at 0, 0.5, 1, 2, 6 and 24 hours after administration of anidulafungin. Blood samples were placed on ice and then centrifuged for three minutes. Plasma was stored at -80°C until analysis. Immediately after sacrifice the anterior chamber of each eye was pierced with a sterile 23-gauge needle, and 0.3-0.4 mL of total aqueous humour was removed. One-hundred µL of aqueous humour (neat) was plated onto Sabouraud agar. Subsequently, both eyes were dissected free from the orbit by cutting the extraocular muscles and the optic nerve. An incision was placed through the sclera and into the posterior chamber of the eye to enable vitreous humour to be collected using a 10 cc syringe. The vitreous humour was then homogenised. Serial 10-fold dilutions were prepared in PBS, which were then plated to Sabouraud agar. For some rabbits, the kidneys were also dissected. A 1 g portion removed, homogenised in PBS, and...
serial dilutions prepared and plated. All Sabouraud agar plates were incubated at 37°C for 24 hours, after which the colony counts in the various tissue matrices were counted.

Measurement of Anidulafungin in Rabbit Plasma and Vitreous Humor

Anidulafungin concentrations in rabbit plasma and vitreous humour were measured using high performance liquid chromatography (HPLC) with a Shimadzu Prominence (Shimadzu, Milton Keynes, UK). A Kinetex 2.6µ C18 New Column 75 x 4.6mm was used (Phenomenex, Macclesfield, UK). A 5 µL injection volume was used. A standard curve encompassing 0.05–10 mg/L in plasma and 0.006-10 mg/L in the remaining matrix, was constructed from stock solutions of anidulafungin 1000 mg/L in DMSO further diluted in methanol (Fisher Scientific, Loughborough, UK). The internal standard was micafungin. The mobile phase was 65% 0.1% TFA in water 35% acetonitrile with 0.1% TFA(v/v) with a gradient profile changing to 30% and 70% respectively over 4 minutes with an overall run time of 6.25 minutes and flow rate of 1 mL/min. Anidulafungin was detected using fluorescence with Ex 273nm, Em 464nm. Anidulafungin and the internal standard eluted after 3.4 and 4.5 mins, respectively. For plasma the CV% was <2.4% over the concentration range 0.05–10 mg/L. The limit of detection was 0.05 mg/L. The intra and inter-day variation was <2.4%. For the remaining matrix the CV% was <4.7% over the concentration range 0.006–10 mg/L. The limit of detection was 0.006 mg/L. The intra and inter-day variation was <5%.

Mathematical Modelling

The pharmacokinetic and pharmacodynamic data were modelled using a population methodology. The population pharmacokinetic program Big nonparametric adaptive grid (Big NPAG) was used (16). The structural mathematical consisted of five compartments, and a schematic representation is shown in Figure 1. The differential equations that were used were as follows:

\[\frac{dX_1}{dt} = R(1) - (k_{cp} + k_{ce} + SCL/Vc) X_1 + k_{ec} X_2 + k_{pc} X_3 \] \hspace{1cm} \text{Equation 1}

\[\frac{dX_2}{dt} = k_{ce} X_1 - k_{ec} X_2 \] \hspace{1cm} \text{Equation 2}
\[
\frac{dX_3}{dt} = k_{cp}X_1 - k_{pc}X_3 \quad \text{Equation 3}
\]
\[
\frac{dN_{\text{eye}}}{dt} = K_{g_{\text{max,eye}}} \left(1 - \frac{N_{\text{eye}}}{POPMAX_{\text{eye}}} \right) N_{\text{eye}} \quad \text{Equation 4a}
\]
\[
\left(1 - \frac{X_2}{V_{\text{eye}}} \right) H_{g_{\text{eye}}} + C_{50_{g_{\text{eye}}}} H_{g_{\text{eye}}} \right) \right) \quad \text{Equation 4b}
\]
\[
-k_{k_{\text{max,eye}}} \left(1 - \frac{X_2}{V_{\text{eye}}} \right) H_{k_{\text{eye}}} + C_{50_{k_{\text{eye}}}} H_{k_{\text{eye}}} \right) \right) \quad \text{Equation 4c}
\]
\[
\frac{dN_{\text{kidney}}}{dt} = K_{g_{\text{max,kidney}}} \left(1 - \frac{N_{\text{kidney}}}{POPMAX_{\text{kidney}}} \right) N_{\text{kidney}} \quad \text{Equation 5a}
\]
\[
\left(1 - \frac{X_1}{V_{c}} \right) H_{g_{\text{kidney}}} + C_{50_{g_{\text{kidney}}}} H_{g_{\text{kidney}}} \right) \quad \text{Equation 5b}
\]
\[
-k_{k_{\text{max,kidney}}} \left(1 - \frac{X_1}{V_{c}} \right) H_{k_{\text{kidney}}} + C_{50_{k_{\text{kidney}}}} H_{k_{\text{kidney}}} \right) \quad \text{Equation 5c}
\]

Where: \(X_1, X_2, \) and \(X_3\) is the amount of anidulafungin (in milligrams) in the central compartment (plasma), vitreous humour and peripheral compartment, respectively. \(R(1)\) represents the infusion of anidulafungin into the bloodstream via the central venous catheter; \(SCL\) is the clearance of anidulafungin from the central compartment; \(V_{c}\) and \(V_{\text{eye}}\) and are the volumes of central compartment and vitreous humour, respectively; \(K_{cp}, K_{pc},\) \(K_{ce}\) and \(K_{ec}\) are the first-order rate constants that connect the respective compartments. \(N\) is the burden (organisms/gram vitreous humor or kidney) of \textit{Candida albicans}; \(K_{g_{\text{max}}}\) is the maximal rate of growth in the vitreous humour or kidney; \(POPMAX\) is the theoretical maximal density within the vitreous humour or kidney; \(H_{g}\) is the slope function for the suppression of growth in the vitreous humour or kidney; \(C_{50g}\) is the concentration of drug producing half-maximal suppression of growth; \(K_{k_{\text{max}}}\) is the maximal rate of kill in the vitreous humour or kidney; \(H_{k}\) is the slope functions for the fungal kill in the vitreous humour or kidney; \(C_{50k}\) is the concentration of drug in the vitreous humour or kidney where fungal kill is half-maximal.

Equation 1 describes the rate of change of anidulafungin in the central compartment (plasma).

Equation 2 describes the rate of change of drug in the vitreous humour.

Equation 3 describes the rate of change of drug in the peripheral compartment (i.e. everything other than the blood and the vitreous humour).
Equation 4 describes the rate of change of fungal burden in the vitreous humour that contains terms describing the capacity-limited growth of *Candida albicans* (4a); the drug associated suppression of growth in the eye (fungistatic term) (4b); and the drug-associated fungal kill in the eye (fungicidal term) (4c).

Equation 5 describes the rate of change of fungal burden in the kidney that contains terms describing the capacity-limited growth of *Candida albicans* (4a); the drug associated suppression of growth in the kidney (fungistatic term) (4b); and the drug-associated fungal kill in the kidney (fungicidal term) (4c).

The weighting function for each output was determined using the maximum likelihood estimator in ADAPT 5 (6), as previously described. The data from rabbits receiving the same anidulafungin regimen were pooled to estimate these values. The fit of the model to the data was assessed by mean weighted error (a measure of precision), mean weighted squared error (a measure of bias), by visual inspection and coefficient of determination (r^2) of the linear regression of the observed-predicted values both before and after the Bayesian step.

The area under the concentration time curve (AUC) in both plasma and the vitreous humor was estimated from the mathematical model. The structural mathematical model was implemented within the simulation module of ADAPT 5 (6). The AUCs were estimated using integration.

Bridging from Rabbits to Humans

To further place the experimental findings in a clinical context, the experimental results were bridged from rabbits to humans. The area under the concentration time curve (AUC) in the second dosing interval was used as a measure of drug exposure. The mathematical model (described above) was used to estimate the relationship between AUC and the antifungal effect in the vitreous humour and the kidney. The stasis line was defined as the fungal density in the respective tissues at the time treatment was commenced. The AUC (mean ± standard deviation) the results from anidulafungin therapy in neonates (3 mg/kg, followed by 1.5 mg/kg i.v.), children (3 mg/kg, followed by 1.5 mg/kg i.v.), and adults (200 mg load, then 100 mg/day i.v.) (obtained from the following references (9, 33) was
compared with the experimental AUCs achieved in rabbits, thus enabling a visual
comparison of the likely antifungal effect of these regimens in different patient populations.
RESULTS

Following i.v. inoculation of *Candida albicans*, there was rapid hematogenous dissemination to the kidney and the vitreous humour (Figure 3). The estimate from the mathematical model for the median fungal density in the kidney and the vitreous humor immediately following infection was 573 and 3 organisms/gram tissue, respectively (see Table 1). Over the course of the experimental period, there was progressive logarithmic growth at both effect sites. The fungal density in the vitreous and kidney at the time of the initiation of therapy (i.e. 48-hrs after inoculation) was log$_{10}$CFU/g 2.02, and 4.63, respectively (these estimates were used to define the stasis line). The aqueous humour remained sterile throughout the experimental period in control animals (data not shown)

Anidulafungin was well tolerated with no evidence of drug-related toxicity following the administration of 20 mg/kg infused i.v. over 1 minute. The pharmacokinetics of anidulafungin were linear. Anidulafungin was detectable in the vitreous humour immediately following the first dose and thereafter. There was no evidence of progressive accumulation of anidulafungin within the vitreous humor. There was dose-dependent penetration of anidulafungin into the vitreous humor and the concentration-time profiles in the plasma and eye had a similar shape (i.e. there was no evidence of hysteresis—see Figure 2). The AUC$_{\text{vitreous humor}}$\text{**:AUC$_{\text{plasma}}$: was 2.3%.

The pharmacodynamics of anidulafungin in the eye were somewhat variable, which is consistent with previously observed effects of antifungal agents in this rabbit model of central nervous system infection (12, 13, 33). The administration of anidulafungin 5 mg/kg had a negligible effect on the fungal density in the vitreous humor. In contrast there was a small, but definite effect on the fungal density in the kidney (Figure 3, Panel B). There was a progressive antifungal effect within the vitreous humor following the administration of higher dosages. The administration of 20 mg/kg was required to achieve a fungistatic effect (i.e. prevent progressive fungal growth from the time of drug administration—see Figure 3, Panel D). In contrast, the administration of these higher dosages resulted in progressive fungicidal activity in the kidney (Figure 3, Panels C and D), with a net decline in fungal density.
The fit of the mathematical model to the data was reasonable with a coefficient of determination for the linear regression of observed-versus-predicted values \(r^2 \) for the concentrations of anidulafungin in the plasma, concentrations of anidulafungin in the vitreous, and the fungal density in the vitreous were all >0.65. The mathematical model was used to estimate the residual fungal burden in both the kidney and vitreous humor following the administration of various dosages of anidulafungin. The relationship between the plasma AUC and the fungal burden in the kidney and the vitreous humour is shown in Figure 4. There was a progressive decline in the kidney burden with increasing AUC. Stasis was achieved in the kidney with a plasma AUC of approximately 100 (Figure 3). In contrast the antifungal effect in the eye was completely different with a much slower reduction in fungal burden with increasing drug exposure, despite the fungal burden at the initiation of therapy being significantly lower. For the vitreous humour, stasis was achieved with a plasma AUC of approximately 270 (Figure 3). The AUC (mean ± standard deviation) for neonates and infants receiving a maintenance dose of 3 mg/kg and children receiving 1.5 mg/kg/day i.v. was 115.87 ± 57.71, and 99.50 ± 33.50, respectively (these estimates were obtained from previous publications (9, 33)). A reasonable estimate for the mean AUC in adult patients receiving 100 mg per day is 105 mg.h/L, (calculated as dose (mg)/clearance (L/h) or 100 mg/ 0.95 L/h), but no robust estimates of dispersion are available. The AUCs for all three populations corresponds to a fungistatic effect in the kidney, but only minimal antifungal activity in the vitreous humor.
DISCUSSION

Candida endophthalmitis is a significant cause of morbidity for patients with disseminated candidiasis that can affect neonates, children and adults. Estimates for the incidence of this syndrome range from 10-46 % (17) in older studies to 1% in more recent studies (10). The reasons for the lower incidence in more recent studies are unknown, but may potentially reflect more widespread use of antifungal prophylaxis.

As shown in Figure 1, hematogenous dissemination of *Candida* spp. to the eye occurs via the long and short ciliary arteries (branches of the ophthalmic artery) and ultimately seeding of the highly vascular choroid (19). Fungal growth and invasion from this initial site leads to progressive involvement of the retinal pigment epithelium and retina; this syndrome is chorioretinitis and manifests clinically as fluffy white exudates on ophthalmoscopy. Further anterior extension into the vitreous humour leads to vitritis.

Established infection of the vitreous and/or the aqueous humor of the anterior chamber constitutes the syndrome of *Candida* endophthalmitis. If untreated, widespread inflammation and necrosis occurs resulting in destruction of the globe and irreversible blindness. Acute symptoms are often initially floaters (mobile obscuration of vision), redness and discomfort of the eye followed by visual loss. Visual impairment may result from retinal detachment, vitreous infiltration, central chorioretinal lesions (25) and/or cataract formation (5). Endogenous endophthalmitis is a particular threat to quality of life because of its propensity to cause bilateral visual loss.

The eye is a sanctuary site that is normally protected by the blood-ocular-barrier, which performs a similar function to the blood-brain-barrier. The blood-ocular-barrier controls the transport of nutrients from the choroid to the retina, and prevents the unrestricted transgression of xenobiotics. The blood-ocular barrier is comprised of two layers: an outer and inner barrier (15). The outer layer comprises retinal pigment epithelium that controls movement of molecules between the choroid to the retina. Paracellular molecular movement is limited by tight junctions between the apical aspects of the cells. The inner barrier comprises those elements that make up the walls of the retinal capillaries, principally the non-fenestrated endothelial cells bound by tight junctions supported by Muller cells and astrocytes (see Figure 1). Infection that is extraneous to the blood-ocular-barrier may be successfully treated with systemic antifungal agents alone. Treatment of
infections beyond the blood-ocular-barrier is significantly complicated by poor penetration of many antifungal agents, and therefore often requires adjunctive treatments such as vitrectomy and the intravitreal instillation of antifungal agents. The therapeutic implications of the blood ocular barrier were readily apparent in this study where the exposure response relationships for anidulafungin in the vitreous humour and kidney were completely discordant. The AUC for stasis in the eye and kidney was approximately 270 and 100 mg.h/L, respectively.

In keeping with the other licensed echinocandins, anidulafungin is a large water soluble lipopeptide with a molecular weight of approximately 1200 Daltons (7). The mechanism of penetration of anidulafungin into the vitreous humor is unclear. The presence of an echinocandin transporter is possible, but has not been described. Alternatively, disruption of the blood-ocular-barrier by the pathological process may facilitate drug penetration, and this has been previously described for fluconazole, itraconazole and ketoconazole in experimental Candida endophthalmitis (27). Regardless of the transport mechanism(s), we demonstrated quantifiable anidulafungin concentrations in the vitreous humour in the first dosing interval. Although the total drug exposure, quantified in terms of the AUC, was only a small fraction of that in plasma (2.3%), we were able to demonstrate clear antifungal activity. In this regard, the results are reminiscent of compounds such as itraconazole, where the intraocular concentrations are relatively low, but there is an antifungal effect that is comparable to agents such as fluconazole that readily penetrate the eye (27).

Despite considerable evidence to the contrary (see for example (13, 22, 31), the echinocandins are consistently reported to be compounds that do not penetrate the eye or other parts of the central nervous system, and agents that should not be used to treat fungal infections at these sites. The clinical outcomes of patients with endophthalmitis receiving echinocandins is variable (4, 11, 18, 26). Progressive endophthalmitis has been attributed to poor ocular penetration of caspofungin (11). Our study suggests that anidulafungin may be an effective agent for the treatment of Candida endophthalmitis, but only at significantly higher dosages than are currently licensed or commonly used. For an example, an “average” adult healthy volunteer receiving anidulafungin 100 mg/day develops an AUC of approximately 105 mg.h/L (100 mg divided by 0.95 L/h) (9). There are currently no published population pharmacokinetic models for patients that provide an
estimate of the range of AUCs that develop with standard dosing. An AUC of approximately
100 mg.h/L is associated with significant antifungal activity in the kidney (attainment of
stasis and ~ a 2 logs of effect, see Figures 3 and 4), but relatively minimal antifungal activity
in the eye (Figures 3 and 4). As further shown in Figure 4, an AUC of approximately 270
mg.h/L is required to achieve stasis in the eye, which (assuming linear pharmacokinetics
with dosage escalation) would require approximately 250-300 mg/day in adults. Similar
dosage escalation would also be required for neonates and children. At the current time,
there are no pharmacokinetic data or models for these higher dosages in any age group. In
contrast, both caspofungin and micafungin have been studied at higher dosages than are
routinely used in clinical practice (3, 21, 29). Certainly, the wide therapeutic index that is
characteristic of the echinocandins suggests that use of higher dosages of anidulafungin may
be possible.

There are a number of limitations and assumptions that are made in this study.
Firstly, we only studied a single strain of Candida albicans. There are strain-to-strain
differences in the invasive potential and therefore the pharmacodynamic relationships of
anidulafungin against Candida in the eye; second, we did not consider the implication of
anidulafungin for dosing with combined surgical therapy (vitrectomy) or in combination with
other antifungal agents; third, the validity of the bridging study is based on the assumption
that the rate and extent of trafficking of anidulafungin from the plasma to the vitreous
humor in rabbits and humans is comparable. Despite these potential limitations, the model
is a rigorous test of antifungal activity primarily because of the treatment delay of 48 hours,
which enables infection and invasion to become well established. We have demonstrated
that anidulafungin does penetrate the eye and that the achievement of significant
antifungal activity requires higher dosages than are currently used. Therefore, this study
provides the experimental foundation for the appropriate use of anidulafungin for ocular
infections. Well-designed pharmacokinetic-pharmacodynamic studies in laboratory animal
models and patients represents an efficient way in which antifungal therapy for Candida
endophthalmitis can be further optimized.
References

Table 1. The model parameter mean, medians and standard deviation

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL (L/h)</td>
<td>0.191</td>
<td>0.208</td>
<td>0.048</td>
</tr>
<tr>
<td>Vc (L)</td>
<td>0.825</td>
<td>0.789</td>
<td>0.261</td>
</tr>
<tr>
<td>Kcb (h⁻¹)</td>
<td>5.328</td>
<td>0.381</td>
<td>8.562</td>
</tr>
<tr>
<td>Kbc (h⁻¹)</td>
<td>5.251</td>
<td>0.265</td>
<td>7.528</td>
</tr>
<tr>
<td>Kcp (h⁻¹)</td>
<td>5.165</td>
<td>3.549</td>
<td>4.394</td>
</tr>
<tr>
<td>Kpc (h⁻¹)</td>
<td>16.949</td>
<td>21.090</td>
<td>9.552</td>
</tr>
<tr>
<td>Vbrain (L)</td>
<td>49.364</td>
<td>49.096</td>
<td>21.556</td>
</tr>
<tr>
<td>Kgmax-eye (log₁₀CFU/g/h)</td>
<td>0.080</td>
<td>0.070</td>
<td>0.029</td>
</tr>
<tr>
<td>Hg-eye</td>
<td>3.331</td>
<td>4.958</td>
<td>2.010</td>
</tr>
<tr>
<td>C50g-eye (mg/L)</td>
<td>0.193</td>
<td>0.148</td>
<td>0.170</td>
</tr>
<tr>
<td>POPMAX-eye (CFU/g)</td>
<td>82291</td>
<td>99139</td>
<td>33087</td>
</tr>
<tr>
<td>Kkmax-eye (log₁₀CFU/g/h)</td>
<td>0.651</td>
<td>0.380</td>
<td>0.623</td>
</tr>
<tr>
<td>Hk-eye</td>
<td>3.496</td>
<td>3.292</td>
<td>1.481</td>
</tr>
<tr>
<td>C50k-eye (mg/L)</td>
<td>0.710</td>
<td>0.687</td>
<td>0.291</td>
</tr>
<tr>
<td>Kgmax-kidney (log₁₀CFU/g/h)</td>
<td>0.096</td>
<td>0.092</td>
<td>0.0282</td>
</tr>
<tr>
<td>Hg-kidney</td>
<td>4.258</td>
<td>4.951</td>
<td>1.325</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>C50g-kidney (mg/L)</td>
<td>3.204</td>
<td>1.550</td>
<td>3.936</td>
</tr>
<tr>
<td>POPMAX-kidney (CFU/g)</td>
<td>49984300</td>
<td>84269040</td>
<td>47137700</td>
</tr>
<tr>
<td>Kkmax-kidney (log10 CFU/g/h)</td>
<td>0.563</td>
<td>0.585</td>
<td>0.207</td>
</tr>
<tr>
<td>Hk-kidney</td>
<td>3.018</td>
<td>4.064</td>
<td>1.481</td>
</tr>
<tr>
<td>C50k-kidney (mg/L)</td>
<td>15.309</td>
<td>18.701</td>
<td>7.286</td>
</tr>
<tr>
<td>Initial Condition-eye (CFU/g)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Initial Condition-kidney (CFU/g)</td>
<td>1061</td>
<td>573</td>
<td>1036</td>
</tr>
</tbody>
</table>

*SCL is the clearance of anidulafungin from the central compartment; Vc and Veye are the volumes of central compartment and vitreous humour, respectively; Kcp, Kpc, Kce and Kec are the first-order rate constants that connect the respective compartments. N is the burden (organisms/gram vitreous humor or kidney) of *Candida albicans*; Kgmax is the maximal rate of growth in the vitreous humour or kidney; POPMAX is the theoretical maximal density within the vitreous humour or kidney; Hg is the slope function for the suppression of growth in the vitreous humour or kidney; C50g is the concentration of drug producing half-maximal suppression of growth; Kkmax is the maximal rate of kill in the vitreous humour or kidney; Hk is the slope functions for the fungal kill in the vitreous humour or kidney where fungal kill is half-maximal.
Figure 1. Schematic representation of the pathogenesis of *Candida* chorioretinitis and *Candida* endophthalmitis. Panel A, a sagittal section of the globe showing normal structures (upper half) and pathological features of *Candida* endophthalmitis (bottom half). Panel B, a schematic representation of the microscopic cross section through the eye. The course of infection from the choroid through to the vitreous is shown by the broken arrows.
Figure 2. The pharmacokinetics of anidulafungin in the plasma (raw data shown by open squares) and vitreous humor (raw data shown by open circles). Panel A: 5 mg/kg, Panel B: 10 mg/kg, Panel C 20 mg/kg. The solid line is the fit of the mathematical model to the plasma data. The broken line is the fit of the mathematical model to the vitreous humor concentrations. Note: the plasma and tissue PK are shown on a semi logarithmic plot.
Figure 3. The pharmacodynamics of anidulafungin in the vitreous humor and the kidney. The raw data from the vitreous humor and kidney are shown by the open squares and open circles, respectively. The fit of the mathematical model to the kidney data is shown by the broken line. The fit of the mathematical model to the vitreous humor data is shown by the solid line.
Figure 4. Simulations from the mathematical model relating the plasma area under the concentration time curve (AUC) with residual fungal burden in the kidney (solid squares) or vitreous humor (solid circles) at the end of the experimental period. The stasis lines for the kidney and the vitreous humor are shown by the broken lines; these represent the fungal burden at the time anidulafungin therapy is begun, 48 hours after inoculation. The mean ± standard deviation of the AUCs that develop in neonates/infants and children aged 2-17 are shown (open circles). An “average” adult patient receiving anidulafungin 100 mg/day develops an AUC of approximately 105 mg.h/L.