Clonal structure, extended-spectrum β-lactamases and acquired AmpC-type cephalosporinases of Escherichia coli populations colonizing patients in rehabilitation centers in four countries.

R. Izdebski1±, A. Baraniak1±, J. Fiett1, A. Adler2, M. Kazma2, J. Salomon3, C. Lawrence4, A. Rossini5, A. Salvia5, J. Vidal Samso6, J. Fierro6, M. Paul7, Y. Lerman8, S. Malhotra-Kumar9, C. Lammens9, H. Goossens9, W. Hryniewicz1, Y. Carmeli2, and M. Gniadkowski1* on behalf of the MOSAR WP2 & WP5 study groups†

1 National Medicines Institute, Warsaw, Poland
2 Division of Epidemiology and Preventive Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
3 INSERM, Institut Pasteur, Cnam, Paris, France
4 Hôpital Maritime de Berck, Berck/Garches/Paris, France
5 Fondazione Santa Lucia IRCCS, Rome, Italy
6 Institute Guttmann, Barcelona, Spain
7 Loewenstein Hospital, Ra’anana, Israel
8 Geriatric Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
9 University of Antwerp, Antwerp, Belgium
10 INSERM, U957 & Université Paris-Est, Créteil, France

Key words: Escherichia coli, population study, MLST, ESBL, AmpC

* Corresponding author:
Marek Gniadkowski, National Medicines Institute, ul. Chelmńska 30/34, 00-725 Warsaw, Poland. Fax: (+48) 22 - 841 29 49. E-mail: gniadkow@cls.edu.pl

† apart from the authors listed above, the MOSAR WP2 & WP5 study groups included:
A. Grabowska, M. Herda, E. Nikonorow – National Medicines Institute, Warsaw, Poland; M. J. Schwaber, E. Bilavsky, M. Elenbogen, A. Klein, S. Navon-Venezia, M. Shklyar, L. Keren, R. Glick, S. Klärfeld-Lidji, E. Mordechai, S. Cohen, R. Fachima, Y. Zdenevsky, B. Knubovets – Division of Epidemiology and Preventive Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel; J. Lasley, I. Bertucci, M.-L. Delaby, C. Colmant, C. Sacleux – Hôpital Maritime de Berck, Berck/Garches/Paris, France; R. Formisano, M. P. Balice, E. Guaglianone – Fondazione Santa Lucia IRCCS, Rome, Italy; S. Camps – Institute Guttmann, Barcelona, Spain; J. Hart, E. Isakov, A. Friedman, A. Rachman, G. Franco, I. Or – Loewenstein Hospital, Ra’anana, Israel; A. Rabinovich – Geriatric Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

AAC Accepts, published online ahead of print on 31 October 2012

Downloaded from http://aac.asm.org/ on December 20, 2017 by guest
The prospective project MOSAR was conducted in five rehabilitation units: BM (France), FS (Italy), GI (Spain), and LH and TA (Israel). Patients were screened for carriage of Enterobacteriaceae resistant to expanded-spectrum cephalosporins (ESCs) from admission until discharge. The aim of this study was to characterize clonal structure, and extended-spectrum β-lactamases (ESBLs) and acquired AmpC-like cephalosporinases in Escherichia coli populations collected. A total of 376 isolates were randomly selected. The overall number of sequence types (STs) was 76, including seven STs that grouped at least 10 isolates from at least three centers each, namely STs: 10, 38, 69, 131, 405, 410 and 648. These clones comprised 65.2% of all isolates, and ST131 alone – 41.2%. Of 54 STs observed only in one center, some STs played a locally significant role, like ST156 and ST393 in GI or ST372 and ST398 in TA. Among 16 new STs, five arose from the evolution within the ST10 and ST131 clonal complexes. ESBLs and AmpCs accounted for 94.7% and 5.6% of the ESC-hydrolyzing β-lactamases, respectively, being dominated by the CTX-M-like enzymes (79.9%), followed by SHV (13.5%) and CMY-2 (5.3%) types. CTX-M-15 was the most prevalent β-lactamase overall (40.6%); other ubiquitous enzymes were CTX-M-14 and CMY-2. Almost none of the common clones correlated strictly with one β-lactamase; although 58.7% of ST131 isolates produced CTX-M-15, the clone expressed also nine other enzymes. A number of clone variants with specific PFGE and ESBL types were spread in some locales, potentially representing newly emerging E. coli epidemic strains.
Escherichia coli is one of the key human pathogens, responsible for a variety of infections in both the hospital and the community. The most important is urinary tract infection, and also bacteremia, intra-abdominal infections, nosocomial pneumonia, neonatal meningitis and others (44). Treatment of these infections has become more and more problematic with time due to the increasing resistance of *E. coli* to antimicrobials, including the expanded-spectrum cephalosporins (ESCs). The main mechanism of resistance to ESCs in *Enterobacteriaceae* is the production of several types of β-lactamases, such as extended-spectrum β-lactamases (ESBLs) or AmpC-like cephalosporinases, and *E. coli* is one of the major producers of these (6, 23). The frequency of ESBL and acquired AmpC producers has been constantly growing in nosocomial *E. coli* populations since the 1980/90s, and since the early 2000s such strains have been increasingly observed in the community as well (6, 23, 41). Two main factors have been responsible for this increase, namely the dissemination of plasmids carrying the ESBL and AmpC genes, and clonal spread of producer strains (8, 55).

The recent introduction of multi-locus sequence typing (MLST) schemes (53) has accelerated the accumulation of knowledge on the clonality of *E. coli* populations world-wide. Numerous reports have described a number of clones, often forming clonal complexes, that have disseminated in all continents. Some of them, usually belonging to the more virulent phylogroups B2 and D (45), have been associated with the rapid spread of resistance, such as ESBL production (37, 55). The main example has been the uropathogenic sequence type (ST) 131, identified in 2008 as a global producer of the CTX-M-15 β-lactamase, which currently predominates among ESBLs (13, 30, 35, 42, 43).

The EU-funded project MOSAR was a prospective study addressing various aspects of the spread of resistance in intensive care, surgical and rehabilitation wards across Europe and Israel, as well as specific actions aimed at combating that [www.mosar-sic.org]. One of its objectives was to reveal the clonal structure of ESC-resistant *Enterobacteriaceae*, colonizing
patients in rehabilitation units (RUs) in four densely populated areas. Here we show the results of the molecular analysis of E. coli identified during this project.

MATERIALS AND METHODS

Study design and clinical isolates. Five RUs located in areas of Paris (Berck Maritime Hôpital, Garches, BM), Rome (Fondazione Santa Lucia, FS), Barcelona (Guttmann Institute, GI) and Tel-Aviv (Loewenstein Hospital, LH; and Tel-Aviv Souraski Medical Center, TA) participated in the study upon the approval of their ethics committees. The units differ in types of patients and size (BM, 80 beds; FS, 106 beds; GI, 38 beds; LH, 45 beds; TA, 50 beds). From October 2008 until February 2011, rectal cultures were collected from all patients at admission, two weeks later, then once monthly, and at discharge. Rectal swabs were plated onto the Brilliance™ ESBL Agar (Oxoid, Basingstoke, UK); Enterobacteriaceae colonies were identified using the manufacturer's instructions. One colony of each morphotype was frozen and shipped to the National Medicines Institute, Warsaw, Poland, for definite analysis. Species identification was done with the Vitek 2 system (bioMérieux, Marcy l’Etoile, France). The phenotypic detection of ESBL and AmpC expression was carried out using the ESBL double-disk synergy test with disks containing cefotaxime, ceftazidime, cefepime and amoxicillin with clavulanate on Mueller-Hinton agar (Oxoid) non-supplemented and supplemented with 250μg/ml cloxacillin (16). E. coli isolates suspected of the high-level AmpC production (augmentation of inhibition zones upon cloxacillin) were tested by PCR for acquired AmpC types (40).

Of the total of 2,389 ESC-resistant E. coli isolates identified in the RUs during the project, 376 patient-unique isolates with ESBL and/or acquired AmpC, collected in 2008-2009, were randomly selected for the molecular analysis according to their study numbers (BM, n=31; FS, n=108, GI, n=32, LH, n=64; and TA, n=141). The aim was to select at least 30 isolates
per hospital; differences in numbers between particular sites resulted from differences in timing of the clinical trials at the sites, availability of cultures at the start of this analysis, and the overall number of ESC-resistant isolates at each institution. The majority of isolates from TA were used also in a separate study on colonization risk factors and population dynamics of ESBL-positive \textit{E. coli}, and a part of the molecular data is presented elsewhere (1).

Typing. Pulsed-field gel electrophoresis (PFGE) was performed as described (46), with the use of the XbaI restriction enzyme (Fermentas, Vilnius, Lithuania). PFGE types and subtypes were discerned visually using the Tenover et al.’s criteria (48). In order to construct dendrograms, electrophoretic patterns were compared by the BioNumerics Fingerprinting software (Version 6.01, Applied Maths, Sint-Martens-Latem, Belgium), using the Dice coefficient and clustering by unweighted pair group method with arithmetic mean, with 1% tolerance in band position differences. Multilocus sequence typing (MLST) was carried out as described previously (53); the database available at http://mlst.ucc.ie was used for assigning sequence types (STs) and clonal complexes. The clonal diversity indexes and confidence intervals (CI) were calculated according to Grundmann et al. (22). Classification of isolates into major \textit{E. coli} phylogenetic groups was done by PCR (10).

β-Lactamase analysis. β-lactamase profiling was done by isoelectric focusing as reported (2), using a Model 111 Mini IEF Cell (Bio-Rad, Hercules, CA). Identification of the \textit{bla}_{CTX-M-1}, \textit{bla}_{CTX-M-2}, \textit{bla}_{CTX-M-3}, \textit{bla}_{CTX-M-25}, \textit{bla}_{SHV}, \textit{bla}_{TEM}, \textit{bla}_{CMY-2} and \textit{bla}_{DHA}-like genes was done by PCRs (17, 18, 29, 54). Sequencing of the genes was performed as reported (17), using sets of consecutive primers specific for each gene type.

RESULTS AND DISCUSSION

Clonal structure of the \textit{E. coli} populations. The 376 \textit{E. coli} isolates were typed by PFGE, followed by MLST of representatives for each PFGE type; for larger types with subtypes
MLST was done on several isolates per type. Overall, 240 isolates were analyzed by MLST. A total of 76 clones (STs) were found (Tables 1 & 2; Figure 1). The clonal diversity index for the entire collection was 81.9% (CI, 77.9-85.8%), and varied from 73.8% (CI, 64.3-83.2%) in FS, 80.9% (CI, 74.8-87.0%) in TA, 83.0% (CI, 69.4-96.2%) in BM, 86.0% (CI, 79.6-92.4%) in LH to 91.3% (CI, 85.4-97.3%) in GI. This indicated that in general the *E. coli* populations were differentiated; however, the on-going spread of specific strains likely played a notable role as well. Indeed, the detailed analysis (PFGE and \(\beta \)-lactamase profiling) revealed clusters of closely related isolates in each center, most significantly in FS and TA (discussed below).

“Major” clones. Twenty-two clones were observed in at least two centers in different countries (n=292; 77.7%), while 10 STs were identified in three or more hospitals each (Table 1). Of these 10 clones, seven comprised at least 10 isolates each, namely STs:10, 38, 69, 131, 405, 410 and 648, accounting for 65.2% of the study isolates (n=245). The situation in which a large collection of *E. coli* isolates is dominated by a small number of clones was often observed but the composition of such groups differed according to the region, and type and source of isolates (20, 28, 39, 49). The seven clones represent different phylogroups (45), namely the groups A (STs: 10 and 410), B2 (ST131) or D (STs: 38, 69, 405 and 648), and were reported in many works performed world-wide on isolates from hospital and community patients (5, 19, 20, 39, 49, 55). Their isolates varied inter- and intra-clonally in virulence (5, 20, 26, 50, 53); recently they have been often associated with diverse resistance traits, including ESBLs and other \(\beta \)-lactamases (5, 15, 19, 20, 26, 32, 33, 38, 39, 49, 55).

i) ST131. The clonal distribution was dominated by ST131, to which 41.2% of the isolates (n=155) were classified. It prevailed in all of the centers, though at varying rates; from 25.0% in GI, 32.8% in LH, 41.1% in TA, 41.9% in BM to 50.9% in FS. A single isolate from FS represented a new ST1827, being a single locus variant (SLV) of ST131 and belonging to its clonal complex. ST131 has been of the highest concern since 2008 when it was identified to
be the global CTX-M-15 producer (13, 35, 42). It has been less frequent among susceptible isolates (11, 28, 42) but the apparent ease to acquire resistance combined with virulence have fuelled its pandemic spread (42). Except for few works (3, 38), ST131 has been the dominant clone in most studies on ESBL-producing *E. coli* (26, 27, 39, 42, 55); therefore, its high frequency here was not surprising. The lowest rate in GI is concordant with other reports from Spain and Barcelona (5, 12, 36), so are the higher rates in the areas of Paris (BM) and Rome (FS) (9, 11). The data for Israel is the first from this country and one of the first in the Middle East (19, 35), showing a remarkable prevalence of ST131, higher than in Egypt (19).

ii) ST10. ST10 was far less frequent (n=19; 5.1%) but like ST131 it was identified in all of the hospitals. Moreover, eight other clones, found sporadically in two or one site each (STs: 48, 167, 617, 744, 1488, 1830, 1831, 2519), belonged to the ST10 complex, grouping 34 isolates (9.0%) altogether. Four of these STs were new: ST1488 (from FS) and ST1830 (GI) were SLVs of ST10, while ST1831 (FS) and ST2519 (LH) were SLVs of the ST10-related ST744 and ST617, respectively. In all but one case such SLV pairs occurred in the corresponding centers; therefore, the new STs might have evolved in these. The complex was especially remarkable in the Israeli center LH where it comprised 17.2% of isolates (n=11).

The significant contribution of ST10 to the spread of resistance has been a very recent observation; previously it was reported in Spain (36), Italy (21), Egypt (19) and Canada (39).

“Minor” clones. The 54 STs identified only in one center each (Table 2) encompassed 22.6% of the isolates (n=84), with larger fractions in GI (40.6%) and BM (32.3%). Several clones in this group were locally significant, *e. g.* ST156 and ST393 in GI (12.5% and 9.4%, respectively) or ST372 and ST398 in TA (9.2% and 6.4%, respectively). A notable part were 16 new STs, identified in each site, including the five aforementioned members of the ST10 and ST131 clonal complexes. The “minor” clones were an important source of the inter-hospital diversity, making *e. g.* the *E. coli* population in GI relatively more specific than the...
others. Their position within the global MLST database varied; whereas the new STs likely were local clones, most of the “minor” STs had been found in other countries, and a number of them have spread globally or belonged to pandemic complexes. It is unclear why some of them were so scarcely observed, like the ST31 complex (clonal group O15:K52:H1), often associated with resistance (5, 7, 24), represented here only by three ST393 isolates in GI and one ST449 in TA. It is easier to understand why just single isolates of ST73 (in FS) and ST95 (TA) were identified. These highly pathogenic clones have been frequently recovered from clinical samples but rarely if at all with ESBLs (4, 19, 20, 47, 52), which may explain their absence in the analyses targeted on ESBL-positive E. coli isolates (3, 36, 39, 49).

MLST vs. PFGE. All of the E. coli clones of wider occurrence and/or higher prevalence were split into multiple PFGE types in the entire population and often so in the local ones (Tables 1 & 2; Figure S1 in the supplemental material). ST131 isolates were diversified into 5-7 types in BM, GI, and TA, 13 types in LH and 19 types in FS, with similarity rates between two patterns falling even below 60%. Some types formed bigger clusters in each hospital (>5% of isolates in a center), usually being ST131, e. g. PFGE types FSEcoJ in FS (n=22; 20.4%) and TAEcoI in TA (n=34; 24.1%). Among the other clones, larger clusters were observed for ST410 in LH (type LHEcoO, 9.4%), and ST372 and ST398 in TA (TAEcoQ, 8.5%, and TAEcoAS, 6.4%, respectively). The STs found in more than one hospital usually had different PFGE types in each center; only the two Israeli sites LH and TA shared closely related strains, including several types of ST131 (e. g. TAEcoI), and some types of STs: 38, 69, 405 and 648. In all these cases isolates of the same PFGE type produced the same β-lactamase in both institutions (see below). The PFGE heterogeneity of ST131 and efficient spread of specific types have been observed previously, and it seems that while in general the diversity reflects the long-term evolution of the clone, the prevalent PFGE types may represent emerging subclones with even enhanced epidemic potential (25, 27, 39). Recently Johnson et al. (26)
have confirmed the earlier hypothesis that the increased virulence in combination with resistance are likely responsible for the ecological success of such variants (41, 42, 55).

Although on smaller scale, similar observations could be made in this study for other clones with multiple PFGE types, like ST10, ST69 or ST648 in particular centers.

ESBLs and acquired AmpCs. Overall, 94.7% of the *E. coli* isolates produced ESBLs (n=356) and 5.6% produced acquired AmpCs (n=21); one isolate had both an ESBL and AmpC. Considering that two isolates co-expressed two ESBLs, the total number of ESC-hydrolyzing \(\beta \)-lactamases was 379, including 358 ESBLs and 21 AmpCs (Table 3). The ESBLs belonged to CTX-M (n=303; 79.9%), SHV (n=51; 13.5%) and TEM (n=4; 1.1%) families, while AmpCs were CMY-2-like enzymes (n=20; 5.3%) and DHA-1 (n=1; 0.3%).

The prevalence of CTX-Ms was 66.7% in GI, 69.2% in LH, 77.3% in TA, 78.1% in BM and 94.4% in FS. They represented four variant groups: CTX-M-1 (CTX-Ms: -1, -3, -15, -32, -55), CTX-M-2 (-2), CTX-M-9 (-9, -14, -27) and CTX-M-25 (-39, -100). The CTX-M-1- and -9-like types were ubiquitous and prevalent (50.1% and 23.5%, respectively), while the CTX-M-25-like types were found only in Israel (7.1% in TA). SHVs (-2, -2a, -5, -12) were prevalent in GI (27.3%) and TA (17.7%), whereas TEMs (-24, -52) occurred only in BM (12.5%). The CMY-2-type AmpCs included three variants (-2, -4, -42). Only three \(\beta \)-lactamases, CTX-M-14, CTX-M-15 and CMY-2, were identified in each of the centers.

CTX-M-15 was produced by 154 isolates of 29 clones (40.6% of the enzymes) (Table 3). Its frequency varied from 12.1% in GI, 28.4% in TA, 46.2% in LH, 46.9% in BM to 60.2% in FS. CTX-M-14 was present in 39 isolates of 16 clones (10.3%), being the main enzyme in GI (39.4%). CTX-M-27 and CTX-M-1 were observed in three centers each, and were produced by 42 and 30 isolates, respectively (11.1% and 7.9% of all of the enzymes, respectively).

CTX-M-27 was prevalent in TA (24.8%) but it was expressed only by three STs; in contrast,
CTX-M-1, frequent in FS (23.1%), was produced by 26 clones. CTX-M-100 from a single isolate from TA, was a new CTX-M-25-like variant, described in details separately (51).

All these results reflected well the rapid dissemination of the CTX-M-type enzymes in the last decade, especially CTX-M-15 and -14 (30, 43). Local specificities, like the predominance of CTX-M-14 in GI, the spread of CTX-M-1 among E. coli clones in FS, and the presence of the CTX-M-25 types in LH and TA had been observed in Spain, Italy and Israel, respectively (31, 34, 36). The SHV enzymes have remained significant but TEMs seemingly tend to disappear upon the ‘CTX-M pressure’, as reported elsewhere (17). They were identified only in France, where TEMs have evolved and extensively disseminated in the past (14).

Clones vs. β-lactamases. Of the widely identified clones (Table 1), ST131 produced alternatively 10 different β-lactamases, including seven CTX-M variants of all groups, SHV-5, -12, and CMY-4. The ST131 PFGE types were usually associated with one enzyme each, like the FSEcoJ with CTX-M-15 in FS or TAEcoI with CTX-M-27 in TA and LH. A few ST131 types expressed various β-lactamases, like TAEcoE in TA (n=17; 12.1%) which produced CTX-M-14, -15, -55 or CMY-4, depending on a PFGE subtype. The most prevalent enzyme in ST131 was CTX-M-15 (58.7% of ST131 isolates), present in multiple PFGE types in each center; however, its frequency varied from 25.9% of ST131 isolates in TA (less than CTX-M-27) or 37.5% in GI (equal to SHV-12) to 90.9% in FS. The lack of strict correlation between a ST and a β-lactamase was observed also for almost all other clones of wider distribution or higher prevalence but isolates of a given PFGE type expressed the same enzyme. This was the case of the aforementioned larger PFGE clusters of ST410 in LH (SHV-12) or ST372 and ST398 in TA (SHV-5 and CTX-M-39, respectively). These results follow a number of other works which demonstrated that basically the pandemic E. coli clones have been spreading by themselves, while the acquisition of locally prevalent plasmids with resistance genes stimulates their further dissemination (42, 55). The combination of ST131
traits with those provided by \(\text{bla}_{\text{CTX-M-15}} \)-carrying plasmids probably has made such organisms fit better for further expansion (8, 13, 26, 42), and this association was observed in this work too. The remarkable exception was the Israeli center TA where the spread of the PFGE type TAEcoI resulted in the predominance of CTX-M-27 in ST131 (~59%), while the association was the strongest in FS, Rome, where the vast majority of ST131 isolates expressed CTX-M-15. These values are close to the extremes reported in earlier studies (9, 42).

Conclusions. This study, being one of the largest \(E. \text{coli} \) population analyses so far, showed a complex view of epidemiology, with a number of similarities and differences between the clinical sites. The similarity elements were the global clones, mainly ST131, and the predominant ESBL types, CTX-M-15 and -14. On the other hand, the local populations remarkably differed from each other; usually ~50% of the STs identified in a center were not observed in the others. This diversity was apparent even in the two Tel-Aviv sites with only eight global clones in common. If to consider that only two clones (ST131 and ST393) in GI, Barcelona, were found among ESBL producers from another hospital in this city in 2008 (12), the results show how different \(E. \text{coli} \) populations may exist in health-care institutions of the same geographic area. The new data, especially from Israel, suggest the possible emergence of several clonal variants that may appear to successfully spread in the future.

ACKNOWLEDGEMENTS

We thank Karol Diestra for her excellent support and Ewa Sadowsy for very helpful discussions. This work was part of the activities of the MOSAR integrated project (LSHP-CT-2007-037941) supported by the European Commission under the Life Science Health priority of the 6th Framework Programme (WP5 and WP2 Study Teams). R.I., A.B., J.F, W.H. and M.G. were financed also by the MOSAR-complementary grant No. 934/6. PR UE/2009/7 from the Polish Ministry of Science and Higher Education.
REFERENCES

TABLE 1. E. coli clones identified in at least two centers: clonal complexes, geographic distribution, PFGE types and ESBL or AmpC types.

<table>
<thead>
<tr>
<th>ST/clone*</th>
<th>Clonal complex</th>
<th>Phylogroup</th>
<th>Center(s)</th>
<th>No. of isolates</th>
<th>No. of PFGE types</th>
<th>ESBL or AmpC variant(s) (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST131</td>
<td>ST131</td>
<td>B2</td>
<td>BM</td>
<td>13</td>
<td>6</td>
<td>CTX-M-15 (8), -14 (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GI</td>
<td>8</td>
<td>5</td>
<td>CTX-M-15 (3), -14 (1), -27 (1), SHV-12 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>21</td>
<td>13</td>
<td>CTX-M-15 (15), -27 (5), CMY-4 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155 (41.2%)</td>
<td></td>
</tr>
<tr>
<td>ST10</td>
<td>ST10</td>
<td>A</td>
<td>BM</td>
<td>1</td>
<td>1</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>4</td>
<td>4</td>
<td>CTX-M-2 (2), -1 (1), CMY-2 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GI</td>
<td>3</td>
<td>2</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>8</td>
<td>4</td>
<td>CTX-M-15 (4), SHV-12 (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA</td>
<td>3</td>
<td>3</td>
<td>CTX-M-14 (1), SHV-5 (1), -12 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19 (5.1%)</td>
<td></td>
</tr>
<tr>
<td>ST354</td>
<td>ST354</td>
<td>D</td>
<td>BM</td>
<td>1</td>
<td>1</td>
<td>TEM-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>2</td>
<td>2</td>
<td>CTX-M-1 (1), CMY-2 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GI</td>
<td>1</td>
<td>1</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>1</td>
<td>nfd</td>
<td>CMY-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA</td>
<td>2</td>
<td>2</td>
<td>CTX-M-2 (1), -15 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 (1.9%)</td>
<td></td>
</tr>
<tr>
<td>ST405</td>
<td>ST405</td>
<td>D</td>
<td>BM</td>
<td>1</td>
<td>1</td>
<td>CMY-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>4</td>
<td>3</td>
<td>CTX-M-15 (2), -1 (1), -14 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>3</td>
<td>2</td>
<td>CTX-M-9 (1), -15 (1), CMY-2 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA</td>
<td>10</td>
<td>7</td>
<td>CTX-M-15 (5), -9 (3), SHV-12 (1), CMY-2 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 (4.9%)</td>
<td></td>
</tr>
<tr>
<td>ST38</td>
<td>ST38</td>
<td>D</td>
<td>FS</td>
<td>3</td>
<td>1</td>
<td>CTX-M-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GI</td>
<td>1</td>
<td>1</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>4</td>
<td>4</td>
<td>CTX-M-15 (3), -9 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA</td>
<td>8</td>
<td>7</td>
<td>CTX-M-15 (4), -14 (2), -9 (1), -27 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 (4.3%)</td>
<td></td>
</tr>
<tr>
<td>ST648</td>
<td>ST648</td>
<td>D</td>
<td>BM</td>
<td>2</td>
<td>2</td>
<td>CTX-M-1 (1), -15 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>4</td>
<td>4</td>
<td>CTX-M-15 (3), -14 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH</td>
<td>1</td>
<td>1</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TA</td>
<td>6</td>
<td>2 + 1nt</td>
<td>CTX-M-15 (5), -14 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 (3.5%)</td>
<td></td>
</tr>
<tr>
<td>ST410</td>
<td>ST23</td>
<td>A</td>
<td>FS</td>
<td>3</td>
<td>2</td>
<td>CTX-M-15 (2), SHV-12 (1)</td>
</tr>
<tr>
<td>ST</td>
<td>ST</td>
<td>Fs or B</td>
<td>Gh</td>
<td>Ta</td>
<td>LH</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td>D</td>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>330</td>
<td>D</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>155</td>
<td>155</td>
<td>B1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>167</td>
<td>10</td>
<td>A</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>23</td>
<td>A</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>617</td>
<td>10</td>
<td>A</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>10</td>
<td>A</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>D</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>744</td>
<td>10</td>
<td>A</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>929</td>
<td></td>
<td>B2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>940</td>
<td>10</td>
<td>B1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1431</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 292 (77.7%)

- STs are ordered according to i) the number of centers in which these were identified, and ii) their prevalence in the entire collection of isolates
- STs observed in two centers (lower part of the table) are presented one per line, without splitting into the center-specific groups
- E. coli phylogroups were adopted from Refs. 3, 31, 37 or 55 (STs: 10, 38, 57, 69, 117, 131, 155, 354, 405, 410, 648) or determined in this work (STs: 48, 88, 167, 216, 224, 617, 744, 929, 940, 1431)
- nt, non-typeable by PFGE due to repeated DNA degradation
<table>
<thead>
<tr>
<th>Center</th>
<th>ST/clone (clonal complex)(^a), (^b), (^c)</th>
<th>No. of isolates</th>
<th>No. of PFGE types</th>
<th>ESBL or AmpC variant(s) (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>23 (23), 58 (155), 127, 154, 345, 349 (349), 1594, 1664, 2164, 2647</td>
<td>10</td>
<td>10</td>
<td>CTX-M-1 (3), -9 (1), -15 (2); TEM-24 (2), -52 (1); CMY-2 (1); DHA-1 (1)</td>
</tr>
<tr>
<td>FS</td>
<td>20 (20), 63, 73, 120, 302, 359, 728, 1249, 1488 (10), 1823, 1827 (131), 1831 (10), 1944, 2518, 2548, 2928</td>
<td>17</td>
<td>15 + 1nt(^d)</td>
<td>CTX-M-1 (12), -9 (1), -15 (2); SHV-2a (1); CMY-2 (1)</td>
</tr>
<tr>
<td>GI</td>
<td>156 (156)</td>
<td>4</td>
<td>2 + 2nt</td>
<td>CTX-M-14 (2); CMY-2 (2)</td>
</tr>
<tr>
<td></td>
<td>393 (31)</td>
<td>3</td>
<td>at</td>
<td>CTX-M-32</td>
</tr>
<tr>
<td></td>
<td>40 (40), 226 (226), 602 (446), 607, 1830 (10), 2197</td>
<td>6</td>
<td>6</td>
<td>CTX-M-14 (2), -15 1; SHV-12 (3)</td>
</tr>
<tr>
<td>LH</td>
<td>316 (278), 361, 542, 1011, 2519 (10), 2520</td>
<td>8</td>
<td>7</td>
<td>CTX-M-2 (1), -14 (1), -15 (5), -39 (1)</td>
</tr>
<tr>
<td>TA</td>
<td>372</td>
<td>13</td>
<td>2</td>
<td>CTX-M-15 (1); SHV-5 (12)</td>
</tr>
<tr>
<td></td>
<td>398 (398)</td>
<td>9</td>
<td>1</td>
<td>CTX-M-39 (8); SHV-5 (1)</td>
</tr>
<tr>
<td></td>
<td>62, 95 (95), 348 (156), 409, 449 (31), 469 (469), 641 (86), 746, 1190, 1596, 1597, 1598</td>
<td>14</td>
<td>11 + 1nt</td>
<td>CTX-M-2 (3), -14 (1), -15 (7), SHV-5 (1), -12 (2)</td>
</tr>
</tbody>
</table>

\(^a\) the first number refers to the ST of a particular clone, the following number in brackets refers to the clonal complex if a clone is a member of such complex

\(^b\) numbers in bold refer to new STs identified in this work

\(^c\) the STs observed in a center are shown in one line together, except for the more prevalent STs (ST156 and ST393 in GI, and ST372 and ST398 in TA) that are presented separately

\(^d\) nt, non-typeable by PFGE due to repeated DNA degradation
TABLE 3. β-lactamase variants in the study isolates; geographic and quantitative distribution.

<table>
<thead>
<tr>
<th>β-lactamase</th>
<th>CTX-M group</th>
<th>Center(s)</th>
<th>No. of isolates</th>
<th>% of enzymes</th>
<th>No. of clones</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX-M-15</td>
<td>-1</td>
<td>BM, FS, GI, LH, TA</td>
<td>154</td>
<td>40.6</td>
<td>29</td>
</tr>
<tr>
<td>CTX-M-27(^a)</td>
<td>-9</td>
<td>GI, LH, TA</td>
<td>42</td>
<td>11.1</td>
<td>3</td>
</tr>
<tr>
<td>CTX-M-14(^b)</td>
<td>-9</td>
<td>BM, FS, GI, LH, TA</td>
<td>39</td>
<td>10.3</td>
<td>16</td>
</tr>
<tr>
<td>CTX-M-1</td>
<td>-1</td>
<td>BM, FS, LH</td>
<td>30</td>
<td>7.9</td>
<td>26</td>
</tr>
<tr>
<td>CTX-M-2</td>
<td>-2</td>
<td>FS, LH, TA</td>
<td>13</td>
<td>3.4</td>
<td>8</td>
</tr>
<tr>
<td>CTX-M-39</td>
<td>-25</td>
<td>TA</td>
<td>10</td>
<td>2.6</td>
<td>3</td>
</tr>
<tr>
<td>CTX-M-9</td>
<td>-9</td>
<td>BM, FS, LH, TA</td>
<td>8</td>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>CTX-M-32</td>
<td>-1</td>
<td>GI</td>
<td>3</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>CTX-M-55</td>
<td>-1</td>
<td>TA</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>CTX-M-3</td>
<td>-1</td>
<td>GI</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>CTX-M-100</td>
<td>-25</td>
<td>TA</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β-lactamase</th>
<th>CTX-M group</th>
<th>Center(s)</th>
<th>No. of isolates</th>
<th>% of enzymes</th>
<th>No. of clones</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHV-12</td>
<td>FS, GI, LH, TA</td>
<td>33</td>
<td>8.7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>SHV-5</td>
<td>FS, TA</td>
<td>16</td>
<td>4.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SHV-2</td>
<td>GI</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SHV-2a</td>
<td>FS</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| TEM-24 | BM | 3 | 0.8 | 3 |
| TEM-52 | BM | 1 | 0.3 | 1 |

CMY-2	BM, FS, GI, LH, TA	12	3.2	8
CMY-4	LH, TA	7	1.8	3
CMY-42	LH	1	0.3	1

| DHA-1 | BM | 1 | 0.3 | 1 |

\(^a\) – CTX-M-27 was encoded by bla\(_{CTX-M-27a}\) (n=41) and bla\(_{CTX-M-27b}\) (n=1) genes.

\(^b\) – CTX-M-14 was encoded by bla\(_{CTX-M-14a}\) (n=36) and bla\(_{CTX-M-14b}\) (n=3) genes.

\(^c\) – The total number is higher than 376 isolates because three isolates co-produced two different β-lactamases.
FIGURE LEGENDS

FIGURE 1. MLST-based population structure of ESBL- and/or AmpC-producing *E. coli* isolates identified in the five rehabilitation centers (BM, FS, GI, LH and TA) during the MOSAR study. The scheme was constructed using the eBURST analysis. STs are symbolized by dots; the size of a dot corresponds to the number of isolates belonging to a ST. Single locus variants (SLVs) are linked by solid lines.