Pharmacokinetics of phase I nevirapine metabolites

following a single dose and at steady state

Running title: Pharmacokinetics of nevirapine metabolites

Patty FAN-HAVARD1, 2, Zhongfa LIU3, Monidarin CHOU4, Yonghua LING3, Aurélie BARRAIL-TRAN5,6, David W. HAAS7, Anne-Marie TABURET*5 and the ANRS12154 study group

1School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Amherst, NY, 14260; 2College of Medicine, 3College of Pharmacy and Comprehensive Cancer Center, the Ohio State University Columbus, OH, 43210; 4Rodolphe Mérieux Laboratory, Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia, 5Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Clinical Pharmacy, France, 6EA4123, Faculty of Pharmacy, University Paris Sud, France, 7Departments of Medicine, Pharmacology, Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA

*Correspondence to: Dr Anne-Marie Taburet
Clinical Pharmacy Department
Hôpitaux Universitaires Paris Sud
Hôpital Bicêtre
78 rue du Général Leclerc
94270 Kremlin Bicêtre France
23 Fax +33 1 45 21 28 60 Phone +33 1 45 21 29 57
24 *PFH and ZL contributed equally to this work
25
Abstract

Nevirapine is one of the most extensively prescribed antiretrovirals worldwide. The present analyses used data and specimens from two prior studies to characterize and compare plasma nevirapine phase I metabolite profiles following a single 200 mg oral dose of nevirapine in 10 HIV-negative African Americans, and at steady state with 200 mg twice-daily in 10 HIV-infected Cambodians. Nevirapine was assayed by HPLC. The 2-, 3-, 8- and 12-hydroxy and 4-carboxy metabolites of nevirapine were assayed by LC/MS/MS. Pharmacokinetic parameters were calculated by non-compartmental analysis. The metabolic index for each metabolite was defined as the ratio of metabolite AUC to nevirapine AUC. Every metabolite concentration was much less than the corresponding nevirapine concentration. The predominant metabolite after single dose and at steady state was 12-hydroxynevirapine. From single to steady state, the metabolic index increased for 3-hydroxynevirapine (p<0.01), but decreased for 2-hydroxynevirapine (p<0.001). The 3-hydroxynevirapine metabolic index was correlated with nevirapine apparent clearance (p<0.001). These findings are consistent with induction of CYP2B6 (3-hydroxy metabolite) and a possible inhibition of CYP3A (3-hydroxy metabolite), although these are preliminary data. There were no such changes in metabolic indexes for 12-hydroxynevirapine or 4-carboxynevirapine. Two subjects with the CYP2B6 *6*6 genetic polymorphism had metabolic indexes in the same range as other subjects. These results suggest that nevirapine metabolite profiles change over time under the influence of enzyme induction, enzyme inhibition, and host genetics. Further work is warranted to elucidate nevirapine biotransformation pathways, and implications for drug efficacy and toxicity.

Key words: nevirapine, metabolites, single dose, steady state, pharmacokinetics,
Introduction

In resource-limited settings, the non-nucleoside HIV-1 reverse transcriptase inhibitor (NNRTI) nevirapine is among WHO recommended components of first-line antiretroviral therapy. At the time of this study, nevirapine in combination with two nucleoside reverse transcriptase inhibitors such as stavudine or zidovudine, together with lamivudine was the preferred regimen for treatment-naïve patients, in part because of the availability of WHO prequalified low-cost generic fixed-dose combination (1, 2). In addition, single dose nevirapine administered to pregnant, HIV-infected women at delivery has been widely prescribed to prevent mother-to-child transmission (3-6). Despite its major therapeutic benefits, treatment with nevirapine may cause severe hepatotoxicity and/or skin rash in some patients. Molecular mechanisms of nevirapine toxicity is incompletely understood, but causal role of metabolites has been suggested (7, 8).

Despite its widespread use, there remain gaps in understanding of nevirapine metabolism and disposition. Its pharmacokinetic characteristics include a long plasma half-life after single dose administration, which decreases with repeated doses due to autoinduction of its biotransformation (6, 9-11). Nevirapine is 60% bound to plasma proteins, and elimination occurs mainly through oxidative metabolism. Five metabolites have been identified, including hydroxyl metabolites at positions 2, 3, 8 and 12 (figure 1), and 4-carboxynevirapine derived from the 12-hydroxy metabolite. In vitro microsome data suggest that CYP3A is involved in 2-hydroxynevirapine formation and CYP2B6 in 3-hydroxynevirapine formation (12). Several CYPs are involved in the other pathways (12, 13). These metabolites are eliminated in the urine as conjugates, mainly glucuronides (14). Relatively little is known regarding nevirapine biotransformation and metabolite
disposition following a single dose and at steady state, in part due to the lack of a direct and
sensitive assay (13, 15).

A sensitive LC/MS/MS assay was recently developed to quantitate the phase I
metabolites of nevirapine (16). The present analyses applied this assay to specimens from
two prior studies to characterize plasma nevirapine phase I metabolite profiles in two
different situations, one involving a single 200 mg oral dose of nevirapine given to 10 HIV-
negative African Americans, and the other at steady state with 200 mg oral dose twice-
daily in 10 HIV-infected Cambodians. We also compare metabolite profiles between these
situations.

Methods

Patients and study design

Data and specimens for these pharmacokinetic analyses were from individuals who
had participated in two previously published studies (17, 18). This analysis was approved
by the National Ethics Committee of Cambodia, and by the Vanderbilt University
Institutional Review Board. Plasma samples were from 10 healthy, HIV-negative African
Americans (group A) who had received a single oral dose of nevirapine 200 mg (17), and
from 10 HIV-infected Cambodians (group B) from the ESTHER (Ensemble pour une
Solidarité Thérapeutique en Réseau) at the Calmette Hospital (Phnom Penh) (18). In both
groups, plasma was kept frozen until analysis, and genotype data for CYP2B6 *1*6 was
available from the previous studies (17, 18).
Group B patients were on chronic, steady-state antiretroviral therapy with nevirapine 200 mg twice-daily plus two nucleoside analogs (lamivudine with either stavudine or zidovudine) for about 3 years, and agreed to participate to this extensive pharmacokinetic study as part of the ANRS12154 study. In that study, plasma HIV-1 RNA was measured in addition to standard laboratory tests. Plasma samples from group A subjects were obtained at 0.5, 1, 2, 4, 6, 8, 12 and 24 hours and on days 2, 3, 5, 7, 9 and 13 after a single dose of nevirapine. Plasma samples from group B subjects were collected at pre-dose and at 1, 2, 4 and 8 hours after the morning nevirapine dose.

Assay of nevirapine and metabolites in plasma

Plasma nevirapine assays for group A were performed in the United States (17), and for group B were performed in Cambodia (18), both by liquid chromatography according to previously validated assays. The lower limit of quantification was 50 ng/mL. Standard curves were linear up to 5,000 ng/mL (17) or 10,000 ng/mL (18).

Nevirapine metabolites were assayed using a validated tandem LC/MS/MS recently published by the Biomedical Mass Spectrometry Laboratory at the Ohio State University (16). The lower limit of quantification was 1 ng/mL for each hydroxy metabolites and 5 ng/mL for 4-carboxy nevirapine. All concentrations were converted in molar equivalents based on molecular weights: nevirapine, 266; hydroxy nevirapine, 282; and 4-carboxynevirapine, 292.
Pharmacokinetic analysis

Pharmacokinetic parameters for nevirapine and its phase I metabolites were assessed by non-compartmental methods (WinNonlin v6.1; Pharsight Corporation, Mountain View, Calif.). The linear-log trapezoidal method was used to calculate areas under concentration-versus-time curves (AUCs), for group A to the last measurable concentration at time t (AUC\(_{0-t}\)), and for group B over a 12-hour dosing interval (AUC\(_{12}\)).

For group B we assumed identical pre-dose and 12-hour post-dose concentrations. For group A, the AUCs from t to infinity (AUC\(_{\infty}\)) were calculated by extrapolation whenever determination of the terminal rate constant (\(\lambda\)) was possible. Apparent clearances of nevirapine (CL/F) were calculated by the following standard equations after single (SD) or repeated doses (SS), respectively: CL\(_{SD}/F = \) dose/AUC\(_{\infty}\) and CL\(_{SS}/F = \) dose/AUC\(_{12}\).

Metabolic index was defined as the ratio of metabolite AUC to nevirapine AUC. For consistency in group A, AUC\(_{0-t}\) to the same last time "t" of concentration detection was used for metabolites and nevirapine to calculate metabolic indices, due to inability to accurately determine the terminal rate constants (\(\lambda\)) for metabolites that were detected at very low concentrations. The maximum plasma concentration (C\(_{\text{max}}\)), the observed pre-dose concentration (C\(_{0}\)), and time to C\(_{\text{max}}\) (T\(_{\text{max}}\)) were obtained from visual inspection of concentration-time curves.

Statistical analyses

This observational pharmacokinetic study assessed plasma concentrations of nevirapine metabolites following single or repeated doses of nevirapine. When this pilot study was designed there were no data to guide sample size estimates. We chose to study...
10 individuals in each group to detect major differences in nevirapine metabolite disposition.

Pharmacokinetic parameters for nevirapine and its metabolites were described by medians and ranges. Parameters were compared between group A and group B using the non-parametric Wilcoxon rank-sum test. When appropriate, associations between pharmacokinetic parameters were examined using a Spearman correlation test. All analyses were performed using Statgraphics 5 plus (Manugistics, Inc., Maryland, USA).

Results

Study subject characteristics

Subject characteristics are summarized in Table 1. Group A comprised healthy, HIV-negative African Americans who received a single dose of nevirapine. Group B comprised HIV-infected Asians in Cambodia who were studied at steady state on nevirapine-containing regimens for at least one year. All patients had plasma HIV-1 RNA <400 copies/mL at the time of study, and CD4 T cell counts ranged from 155 to 513 cells/mL (median 277 cells/mL). Eight patients were receiving concomitant zidovudine and lamivudine, and 2 concomitant stavudine and lamivudine. None of the patients were receiving medications that induce or inhibit drug metabolizing enzymes (e.g. rifampin or fluconazole). In addition to race/ethnicity, the two populations differ by BMI and proportion of female participants. Frequencies of CYP2B6 516G→T genotypes were similar between groups, with one subject in each group being homozygous for TT. All but
one patient in group B had normal liver function tests (one with ALAT = 99 IU/mL), all had plasma creatinine <1.1 mg/dL, and calculated creatinine clearances >60 mL/min.

Concentrations of nevirapine and its phase I metabolites

The within-day and day-to-day precisions of nevirapine quality control samples included in each analytical run were below 12%. Day-to-day precision of quality control of nevirapine metabolites was below 14%, and accuracy for between-run validation was within 93 and 116%. In groups A and B, plasma concentrations of each metabolite were well below concentrations of nevirapine at every timepoint (Figure 2). Of the metabolites assayed, 12-hydroxynevirapine was most abundant in both groups. Concentrations of 12-hydroxynevirapine were on average 5-times greater in group B than in group A, which parallels nevirapine concentrations. Concentrations of 3-hydroxynevirapine and 4-carboxynevirapine increased 5- to 20-fold in group B compared to group A. Interestingly, 2-hydroxynevirapine concentration decreased from group A to group B. Plasma levels of 8-hydroxynevirapine were undetectable following a single dose of nevirapine. In contrast, measurable concentrations of 8-hydroxynevirapine were detected in all samples in group B, with a median C_{max} concentration of 0.075 μM. Temporal declines in metabolite concentrations tended to parallel declines in nevirapine concentrations, indicating that the rate of metabolite formation is the rate-limiting step in their disposition and is driven by the slow elimination rate for nevirapine.

Pharmacokinetics of nevirapine metabolites

Pharmacokinetic parameters of nevirapine and its phase I metabolites are summarized in Table 2. As expected, the half-life of nevirapine was long in group A, with
considerable interindividual variability (median 99 hours, range 53 to 217 hours). Although median half-lives of some metabolites tended to be shorter than that of nevirapine, these differences were not statistically significant. In group B we could not calculate half-lives for nevirapine or its metabolites, as the dosing interval was too short.

The nevirapine AUC$_{12}$ in group B was significantly less than the AUC$_{inf}$ in group A, and CI/F was significantly greater in group B than in group A (0.83 mL/min/kg and 0.29 mL/min/kg, respectively, p<0.001), indicating non-linear pharmacokinetics and autoinduction. The 3-hydroxynevirapine AUC$_{12}$ in group B was greater than the 3-hydroxynevirapine AUC$_{inf}$ in group A, although this difference was not significant. In contrast, the 2-hydroxynevirapine AUC$_{12}$ was 95% lower in group B than the 2-hydroxynevirapine AUC$_{inf}$ in group A (p<0.001). Median AUC$_{12}$ of 8-hydroxynevirapine was very low (0.76 µM.h) at steady state in patients of group B but could not be calculated in patients of group A. In contrast, 12-hydroxynevirapine and 4-carboxynevirapine AUC$_{12}$ values were significantly lower in group B, representing approximately 30 and 40% of group A AUC$_{inf}$ values, respectively. There was a correlation between AUCs of 4-carboxynevirapine and 12-hydroxynevirapine (r=0.82 p=0.0003). Metabolite indices were compared between group A and group B (Figure 3). The 2-hydroxynevirapine metabolite index was lower in group B than in group A (p=0.0002), while the 3-hydroxynevirapine metabolite index was higher in group B than in group A (p=0.007). In contrast, for 12-hydroxynevirapine and 4-carboxynevirapine metabolic indexes there were no significant differences between group A and group B. In analyses involving all 20 study subjects there were correlations between the apparent clearance of nevirapine and metabolite indices for 2-hydroxynevirapine (r=-0.73, p=0.0014), 3-hydroxynevirapine (r=0.63, p=0.006), and 12-hydroxynevirapine (r=-0.47, p=0.03).
The 2 subjects carrying the CYP2B6 *6*6 genotype had nevirapine and metabolite concentrations in the same range as the other subjects either after single dose administration or at steady state.

Discussion

This is the first study to describe the pharmacokinetics of nevirapine and its phase I metabolites after a single 200 mg dose of nevirapine, and at steady state with the recommended 200 mg twice-daily dosing. The most important findings from this study are first the much lower concentrations of nevirapine metabolites compared to nevirapine, and second the differential disposition of hydroxylated metabolites, possibly in keeping with the different CYPs involved in the nevirapine metabolic pathways (12). Interestingly, the effect of nevirapine induction on CYP2B6 activity leads to an increased concentration of 3-hydroxyneviralpine and a lower concentration of the 2 hydroxyneviralpine metabolite formed through the CYP3A pathway. The pharmacokinetic characteristics of parent nevirapine in the present study agree with previous studies conducted in patients or volunteers after single dose or at steady state which clearly demonstrates the auto inducing properties of nevirapine (10, 19-27). Indeed the two populations studied herein differ by their ethnicity, demographics, and HIV-infection status, although the CYP2B6 *I*6 genetic polymorphism frequency is very close but the significant difference remains when clearances are weight normalized (0.83 mL/min/kg vs 0.29 mL/min/kg). Low apparent nevirapine clearance suggests that biotransformation occurs mainly in the liver and that intestinal first pass effect is negligible. Consequently, as previously mentioned, the higher
nevirapine clearance observed at steady state was due to a change in nevirapine metabolism rather than to altered bioavailability.

This study provides new information regarding unconjugated nevirapine metabolites disposition in plasma. After single dose or at steady state, concentrations are considerably less than those of nevirapine. On one hand, the volume of distribution of polar metabolites should be close to or smaller than that of nevirapine and on the other hand, a very fast rate of glucuronide conjugate elimination is limited by their rate of formation from nevirapine or from 12-hydroxynevirapine for 4-carboxynevirapine. Consequently, different concentrations may be related to different rates of formation. This is in keeping with the previous findings of Riska et al (14) who demonstrated that after autoinduction and administration of a single oral dose (solution) of 50 mg containing 100 mCi of $^{[14]}$C]NVP, glucuronide conjugation and urinary excretion of glucuronidated metabolites represent the primary route of nevirapine biotransformation and elimination in humans. 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), and 12-hydroxynevirapine glucuronide (23.7%) were the major metabolites recovered in urine. They also showed that disposition of radioactivity was rate-limited by biotransformation of nevirapine to its hydroxylated metabolites rather than by excretion of the metabolites into feces and urine, consistent with our results. Our plasma samples were not hydrolysed; therefore the plasma ratio of hydroxynevirapine to their glucuronide is not available in our study. Comparison of steady state trough plasma concentrations in our patients with concentrations measured in HIV-infected patients with mild liver fibrosis (13) showed that non conjugated 2-hydroxynevirapine or 3-hydroxynevirapine concentrations are well below those of the glucuronides which remained lower than those of nevirapine, roughly 2 ng/mL vs 177 ng/mL and 12 ng/mL vs 759 ng/mL respectively. In contrast, 8-hydroxynevirapine
and 12-hydroxynevirapine concentrations are closed whether plasma was hydrolyzed or not (29 vs 31ng/mL, 504 vs 142 ng/mL), indicating that glucuronide concentrations of these metabolites in plasma are low. Concentrations of 4-carboxynevirapine were low and in the same range which is explained by the elimination of this metabolite unchanged in urine (14).

Comparison of concentrations of nevirapine metabolites or metabolic indices after single dose administration and steady state provides insight in nevirapine disposition. Disposition of the four hydroxylated metabolites differ, which could be related to different CYPs involved in their formation. In vitro data demonstrated that CYP3A and CYP2B6 were responsible of the formation of 2- and 3-hydroxynevirapine respectively, while CYP3A and CYP2D6 participated to the formation of 8- and 12-hydroxynevirapine (12). Hepatic CYP2B genes represent the most inducible CYP isoforms by phenobarbital-type compounds in most mammalian species (28, 29). Consequently, induction of CYP2B6 may explain the relative increase in 3-hydroxymetabolite concentrations compared to nevirapine and a significant increase in the metabolic index at steady state compared to single dose. Surprisingly, the 2 subjects from groups A and B carrying the CYP2B6 *6*6 did not have decreased concentrations of 3-hydroxynevirapine suggesting that this variant could be inducible by nevirapine. CYP3A was identified as the unique CYP involved in the formation of 2-hydroxynevirapine which surprisingly is decreased at steady state compared to single dose. A recent investigation conducted in human liver microsomes revealed the formation of a quinine methide reactive intermediate which is subsequently attacked by glutathione to yield a sulphydryl conjugate of nevirapine (30). This reactive intermediate was primarily catalyzed by CYP3A, and possibly CYP2D6, CYP2C19 and CYP2A6 and was shown inactivate CYP3A with a Ki=31µM (about 8000 ng/mL), not far from average...
concentration of nevirapine at steady state. This in vitro data corresponds to the clinical observation of potent attenuation of CYP3A induction and possibly to the decreased formation of 2-hydroxynevirapine. Such a dual mechanism of inhibition/inactivation and induction has been demonstrated for other drugs such as ritonavir or nelfinavir (31, 32), although the net effect of those antiretroviral drugs is potent CYP3A inhibition, in contrast to nevirapine where induction of CYP2B6 is likely the primary pathway. Such a hypothesis is not supported by many drug-drug interaction studies (33). However, a 20% increase in rifabutin and desacetyl-rifabutin (CYP3A substrates) concentrations has been reported when coadministered with nevirapine (Viramune product information, 2010). Another explanation could be induction of 3-hydroxynevirapine-glucuronide formation. Whether such induction could be specific to one glucuronide pathway remains to be further explored. The exact contribution of different CYPs to the formation of 8-hydroxynevirapine and 12-hydroxynevirapine is unknown. Based on in vitro data, 8- and 12-hydroxynevirapine formation is predicted to involve CYP3A and CYP2D6. The 8-hydroxynevirapine was detected in plasma only at steady state. We would expect induction of this metabolic pathway by nevirapine, which is not supported by in vitro data, or alternatively a slow rate of formation by non-inducible CYP2D6 and accumulation at steady state (34, 35). Decreased AUC12 compared to AUCinf but no difference in metabolic indices suggest a major contribution of non-inducible CYP2D6 in the formation of the 12-hydroxynevirapine.

Nevirapine use has been associated with severe skin rash and/or liver toxicity in some patients (36). It has been suggested from in vitro experiments and animal models that the 12-hydroxynevirapine pathway could be involved in nevirapine toxicity. An ultimate reactive metabolite for both liver toxicity and skin rash could be the quinone methide...
formed by CYP3A as previously mentioned (7, 8, 30). Conversely, recent toxicogenomics of nevirapine suggest fundamentally different mechanisms of adverse events: cutaneous, most likely major histocompatibility complex (MHC) class I-mediated and influenced by CYP2B6 nevirapine slow metabolizer genotype; and hepatic most likely MHC class II-mediated and unaffected by CYP2B6 genotype (37). Our study, involving a limited number of subjects, was not designed to compare metabolites exposure and occurrence of side events. Reactive metabolites may form in the liver or skin, so plasma 12-hydroxynevirapine concentrations may not be directly related to toxicity.

This study had several limitations. The studied populations have different characteristics, as the subjects represented different race/ethnicities, HIV status, and body mass index. The timing of blood sample collection differed, with intensive sampling following a single dose vs. sparse sampling at steady state. However, results of nevirapine pharmacokinetic parameters are consistent with previous studies, allowing comparison of metabolite pharmacokinetics. We did not characterize the glucuronidated metabolites either in plasma or urine, so could not fully characterize the disposition of phase 1 and phase 2 metabolism of nevirapine.

In conclusion, this study demonstrates different disposition of unconjugated plasma nevirapine metabolites after single dose administration of nevirapine and at steady state. All concentrations are well below those of nevirapine, the 12-hydroxynevirapine being the highest. Concentrations of the 2-hydroxynevirapine whose formation is CYP3A mediated decreased from single dose to steady state, while those of 3-hydroxynevirapine CYP2B6 mediated increased from single dose to steady state. Clinical consequences of such findings are presently unknown and warrant further investigation.
Acknowledgements

This work was funded by the French Agence Nationale de Recherche contre le VIH/SIDA et les Hepatitises Virales (ANRS) who sponsored the ANRS12154 trial and National Institute of Health grant no. 5U 01 AI069474. This work was supported in part by NIH grants AI-077505, AI-054999, and TR-0000445 (DWH). We acknowledge ESTHER, Mérieux foundation, Institut Pasteur du Cambodge for their support to the ANRS12154 study. We thank all Cambodian health care providers who take care of the patients and the patients who agreed to participate to the study. We acknowledge Michael F. Para, Susan L. Koletar, Lori Mong Kryspin, Julie Kronenberger, and Brian Greenfelder for their generous support at the ACTU Laboratory facility. The ANRS12154 trial group is constituted as follows: the principal investigators are Monidarin Chou (Phnom Penh, Cambodia) and Anne-Marie Taburet (Paris, France). Coinvestigators are Julie Bertrand, France Mentré, Olivier Segeral, Céline Verstuyft, Paris, France; Laurence Borand and Ouk Vara (Phnom Penh, Cambodia).

Conflict of interest/disclosure

Dr. Haas has been principal investigator on research grants to Vanderbilt University from Boehringer Ingelheim, Merck, and Gilead Sciences. None of the other authors have conflicts of interest related to the present study.
References

Figure legends

Figure 1. Structures of nevirapine (parent drug) and its 5 metabolites quantitated in this study (8).

Figure 2. Median plasma concentrations of nevirapine and its 5 metabolites after single dose administration of nevirapine 200 mg (panel A), and at steady state during a 12 hour dosing interval after administration of nevirapine 200 mg twice daily (panel B).

Figure 3. Box plots of metabolic indices of nevirapine metabolites after single dose administration of nevirapine 200 mg (SD), and at steady state during a 12 hour dosing interval after administration of nevirapine 200 mg twice daily (SS).
Table 1. Characteristics of study subjects

<table>
<thead>
<tr>
<th></th>
<th>HIV-negative adults in United States (n=10)</th>
<th>HIV-infected adults in Cambodia (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race/ethnicity</td>
<td>African American</td>
<td>Cambodian</td>
</tr>
<tr>
<td>Female sex (n)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Age in years (range)</td>
<td>25 (21-43)</td>
<td>32 (28-44)</td>
</tr>
<tr>
<td>Weight in kg (range)</td>
<td>68 (59 – 100)</td>
<td>52 (42 -66)</td>
</tr>
<tr>
<td>BMI (range)</td>
<td>23 (18 - 33)</td>
<td>21 (19 – 22)</td>
</tr>
<tr>
<td>CYP2B6 *1/*6 (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1/*1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>*1/*6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>*6/*6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Pharmacokinetic parameters of nevirapine and its metabolites after single dose (group A) and at steady state (group B) as median and range in parenthesis.

<table>
<thead>
<tr>
<th></th>
<th>Group A after single dose</th>
<th>Group B at steady state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cmax (µM)</td>
<td>Tmax (h)</td>
</tr>
<tr>
<td>nevirapine</td>
<td>5.7 (3.8)</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>2-hydroxy LV</td>
<td>0.01 (0.01)</td>
<td>24 (48)</td>
</tr>
<tr>
<td>8-hydroxy LV</td>
<td>non detected</td>
<td></td>
</tr>
<tr>
<td>3-hydroxy LV</td>
<td>0.01 (0.03)</td>
<td>24 (35)</td>
</tr>
<tr>
<td>12-hydroxy LV</td>
<td>0.14 (0.72)</td>
<td>32 (24)</td>
</tr>
<tr>
<td>4-carboxy LV</td>
<td>0.02 (0.01)</td>
<td>12 (24)</td>
</tr>
</tbody>
</table>

AUC12 at steady state compared to AUCinf after single dose * p<0.001 **p<0.01
Figure 1. Structures of nevirapine (parent drug) and its 5 metabolites quantitated in this study (8).
Figure 2. Median plasma concentrations of nevirapine and its 5 metabolites after single dose administration of nevirapine 200 mg (panel A), and at steady state during a 12 hour dosing interval after administration of nevirapine 200 mg twice daily (panel B).
Figure 3. Box plots of metabolic indices of nevirapine metabolites after single dose administration of nevirapine 200 mg (SD), and at steady state during a 12 hour dosing interval after administration of nevirapine 200 mg twice daily (SS).
Nevirapine metabolic pathways
From Chen et al., 2008

CYP3A4
CYP 2B6
CYP3A4, CYP2D6…
8-OH-NVP
CYP 2B6
CYP3A4
and ?
Reactive metabolite