Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against

*Trichomonas vaginalis*

Natalia Mallo, a Jesús Lamas, b and José M. Leiroa,*

Departamento de Microbiología y Parasitología, Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain a; Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain b

SHORT TITLE: Hydrogenosomal activity in *Trichomonas* treated with resveratrol

Journal: Antimicrobial Agents and Chemotherapy

*Corresponding author

Laboratorio de Parasitologia,
Instituto de Investigación y Análisis Alimentarios,
c/ Constantino Candeira s/n,
15782, Santiago de Compostela (La Coruña), Spain
Tel: +34 981 56 31 00
Fax: + 34 881 81 60 27
E-mail address: josemanuel.leiro@usc.es
ABSTRACT

Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis; a sexually transmitted disease caused by the protozoan parasite *Trichomonas vaginalis*. However, novel treatment options are needed, as recent reports claim resistance to these drugs in *T. vaginalis* isolates. In this study, we analyzed for the first time the *in vitro* effects of the natural polyphenol resveratrol (RESV) on *T. vaginalis*. At concentrations between 25-100 μM, RESV inhibited the *in vitro* growth of *T. vaginalis* trophozoites; doses of 25 μM exerted a cytostatic effect and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120 kD [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and only upregulated pyruvate ferredoxin oxidoreductase (a hydrogesomal enzyme) gene expression at a high dose (100 μM). At doses of 50-100 μM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of *T. vaginalis*. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose the hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.

**Keywords:** *Trichomonas vaginalis*, resveratrol, hydrogenosome, hydrogenase, heat shock protein 70, antiparasitic activity
INTRODUCTION

Trichomoniasis is known as the most common non-viral sexually transmitted disease (STD) in the world (1). An ancient extracellular obligate parabasalian flagellate, *Trichomonas vaginalis*, which colonizes the human urogenital tract, causes the disease. Trichomoniasis is a frequent source of vaginitis (about 4 to 35% of vaginitis diagnosed in symptomatic women) and may evolve from an asymptomatic to a chronic inflammatory disease (2, 3, 4). The disease can contribute to premature rupture of membranes during pregnancy, preterm birth, low birth weight, and may facilitate HIV acquisition (5). Currently, metronidazole (MZD) and other 5-nitroimidazoles (tinidazole, ornidazole and secnidazole), which are potent drugs against infections caused by anaerobic or microaerophilic microorganisms, are the only recommended drugs for standard treatment of *T. vaginalis* infection. However, resistance of *T. vaginalis* to MZD, allergic reactions and failure to remedy the infection with two consecutive courses of treatment have been reported (4, 6-9). Studies have shown that at least 5% of clinical cases of trichomoniasis are caused by parasites that are resistant to the above drugs. Because of the lack of approved alternative treatments, the only option for patients with resistant infections is to use higher and sometimes toxic doses of MDZ, which leads to an increase in the occurrence of side effects (6). The reliance on a single class of drugs for treating *T. vaginalis* infections may be problematic if resistance to nitroimidazole becomes widespread in *T. vaginalis* strains. Hence, studies to find new safe agents that are efficacious in the treatment and prevention of refractory trichomoniasis are clearly essential.

Natural products research provides a wide variety of lead structures that are used by the pharmaceutical industry as templates in the development of new drugs that are more effective and have fewer or no undesirable side effects than current treatments.
(10-12). Resveratrol (RESV) is a natural major phytoalexin (a functionally defined class of secondary metabolites), which is produced de novo by plants in response to stress factors, such as pathogen attack, and which promotes disease resistance (13). RESV, which is found naturally in grapes and red wine (14), acts as a precursor for stilbene compounds of higher fungotoxicity that accumulate in grapevine as a result of infection or stress (15). RESV has also been shown to be active against bacteria, fungi, protozoa and viruses (16-22). In addition to its antimicrobial activity, RESV has also attracted attention on the basis of its health benefits to humans, which include anti-inflammatory effects, as well as reduced risk of cardiovascular disease, cancer, obesity, diabetes and neurodegenerative diseases, and also extension of lifespan by mimicking the caloric restriction effect (23).

*Trichomonas vaginalis* is an amitochondrial anaerobic parasite that possesses a hydrogenosome (a double membrane-bound organelle involved in catabolic processes, including glycolysis, which produce energy and excrete molecular hydrogen, thus aiding redox balance) (24). The pathway of oxidative decarboxylation of pyruvate in hydrogenosomes is responsible for metabolic activation of 5-nitroimidazole drugs, such MDZ, used to treat trichomoniasesis (25). Hydrogenosomes are considered an excellent drug target because their metabolic pathway is distinct from those found in mitochondria and thus medicines directed at these organelles will probably not affect the host cells (26).

In this study, we evaluated, for the first time, the *in vitro* effects of RESV on *T. vaginalis*, and we describe some of the potential biochemical targets of hydrogenosomal metabolism involved in the antiparasitic activity.
MATERIAL AND METHODS

Parasites. The Tv1 isolate of *T. vaginalis* was obtained from a female patient suffering from vaginal trichomoniasis attending the Gynaecology service at the Santiago de Compostela University Hospital Complex (Spain). Parasites were cultured axenically *in vitro* in modified Diamond’s medium (MDM) (27). The parasites were cultured at 35°C in 15 mL culture plates completely filled with the medium, which contained (w/v) 2% trypticase, 1% yeast extract, 0.5 maltose, 0.1% L-ascorbic acid, 0.1% L-cysteine, 0.1% KCl, 0.1% KHCO3, 0.1% KH2PO4, 0.1% K2PO4, 0.02% FeSO4 (pH 6.2) and was supplemented with 10% (v/v) heat-inactivated bovine serum. Cells were grown to late log phase (1-2x10⁶ cells/mL) and harvested by centrifugation (200 x g) for all further manipulations.

**In vitro growth assays.** The effects of RESV and MDZ on the *in vitro* growth of *T. vaginalis* were determined as previously described, with minor modifications (18). For all experiments, stock solutions of RESV and MDZ were prepared in DMSO, to a concentration of 100 mM, and stored away from light at -80 °C. In order to investigate their effects on *T. vaginalis*, RESV and MDZ were added to wells of sterile 24-well culture plates (Corning) containing 7x10⁴ trophozoites / well in 1 mL of MDM with the different concentrations of the drugs (25, 50 and 100 μM for RESV and 6.25, 12.5, 25, 50 and 100 μM for MDZ). Control wells containing DMSO at the highest concentration used were included in each plate. The plates were then incubated for 2 days at 35°C in a container under vacuum. The number of ciliates was determined daily by counting the number in 10 μL aliquots of the medium removed from each well, in a haemocytometer.

**Preparation of cell crude extracts (CEs).** *T. vaginalis* trophozoites (10⁷) were harvested by centrifugation (200 x g for 5 min at 4°C) and washed twice with Dulbecco’s phosphate buffered saline (DPBS; pH 7.0) supplemented with calcium and
magnesium, discarding the supernatant. Cells were lysed by adding 200 μl of ultrapure water containing 25 mM metrizamide (Sigma-Aldrich) and 1 mM of phenylmethanesulfonyl fluoride (PMSF) to the pellet for 15 min at 4°C. Proteins were quantified using the Bio-Rad DC assay.

Spectrophotometric assays for [Fe]-hydrogenase (Tvhyd) activity. Tvhyd activity on the CE was quantified spectrophotometrically. Reduced methyl viologen (MV) and a proton (buffer solution) were used as the electron donor and acceptor, respectively, to measure the proton reduction activity (2H⁺ + 2e⁻ → H₂). The reaction buffer contained 20 mM sodium dithionite and 1 mM MV dissolved in DPBS. N₂ gas was bubbled though the reaction solution for 10 min in tubes with over-flange stoppers. Reaction solution (1.4 mL) was preheated to 37°C and transferred to a cuvette, which was then covered with a silicone plug. The reaction was started by the injection of 0.1 mL of CE with an insulin syringe, and it was monitored at 604 nm in a spectrophotometer (Jenway, UK) equipped with temperature control. One enzymatic unit of Tvhyd was defined as the amount of enzyme required to reduce 1 μmol of MV (equivalent to the production of 1 μmol of H₂ per min from reduced MV). The specific activity was defined as the number of enzymatic units per milligram of protein.

Tvhyd activity on native polyacrylamide gel electrophoresis (Native PAGE). Aliquots (475 μg) of CE proteins were dissolved in 200 μl of native protein loading sample buffer (0.1 M Tris-HCl, pH 6.8; 20% glycerol, 0.2% bromophenol blue) and 30 μL of sample was loaded onto 12.5% nondenaturing polyacrylamide gel in a buffer containing 25 mM Tris-HCl, 192 mM glycine (pH 8.3) and 25 mM metrizamide. After electrophoresis, the lane for activity staining was cut out and soaked in basal buffer containing 5 mM MV and 5 mM sodium dithionite previously bubbled for 10 min with N₂ gas. The N₂ gas was then removed and replaced with hydrogen by bubbling H₂ gas
through the buffer containing the gel until the Tvhyd band activities were revealed. The staining was fixed by adding of 1 mg/ml of 2,3,5-triphenyltetrazolium chloride to the buffer and incubating the gel for 15 min at room temperature; the gel was then thoroughly washed with deionized water. The bands exhibiting hydrogenase activity stained red due to the formation of a red precipitate.

Functional hydrogenosome alterations. In order to determine if RESV and MDZ causes alterations in the hydrogenosome functionality, 2 x 10^6 T. vaginalis trophozoites were incubated with MDM alone or with RESV (50 and 100 mM) or MDZ (6.25 and 12.5 mM) for 2 h at 37°C. The trophozoites were permeabilized with 0.1 mM of digitonin and incubated for 2 min at 37°C. The cells were then washed twice by centrifugation (200 x g for 5 min) before being resuspended in 3 ml of MDM containing 500 nM MitoTracker® Deep Red FM (Molecular Probes) and incubated for 30 min at 37°C in the dark. After two washes with DPBS by centrifugation, the pellet was resuspended in 100 μl of DPBS, and the fluorescence was measured in a microplate fluorescence reader (Bio-Tek Instruments, Winooski, VT, USA) (excitation / emission = 644/665 nm). In all experiments, the fluorescence produced by spontaneous oxidation of the probe was subtracted from the fluorescence values obtained for the experimental samples. The trophozoites were fixed with 2-4% formaldehyde for 15 min and washed twice with DPBS to permeabilize them prior to visualization by fluorescence microscopy. Samples fixed in this way can be used for immediate viewing in a fluorescence microscope (excitation / emission = 644/665 nm) or stored in the dark for several days.

Hydrogenosomal membrane potential (Δψm). The hydrogenosomal membrane potential (Δψm) of T. vaginalis was determined using the JC-1 kit (Molecular Probes) with the cationic fluorescent probe 5,5′,6,6′-tetrachloro-1, 1′,3,3′-
tetraethylbenzimidazolcarbocyanine iodide. JC-1 can selectively enter hydrogenosomes and, according to the magnitude of the hydrogenosomal membrane potential, change its oligomeric state, thereby allowing it to fluorescence (28). The assay was carried out as follows: T. vaginalis trophozoites were suspended in culture medium (5x10^5 per 100 μL) containing RESV (at concentrations of 0, 25, 50 and 100 mM) or MDZ (at concentrations of 0, 3.125, 6.25 and 12.5 mM) and incubated in 96-well cell culture plates for 2 h at 37°C in a container to which vacuum was applied. After this period, 10 μL of the probe (diluted 1:10 in MDM) was added to each well and trophozoites were incubated at 37°C in darkness for 30 minutes. The RESV and MDM were then removed by centrifuging the plates (200 x g for 5 min), and the trophozoites were washed twice with 200 μL of the previously prepared assay buffer and suspended in 100 μL of the same buffer. Finally, emitted fluorescence was measured immediately in a microplate fluorimeter to detect FITC (excitation/ emission = 485/535 nm). In all experiments, the fluorescence produced by spontaneous oxidation of the probe was subtracted from the fluorescence values obtained for the experimental samples.

**Assay of intracellular reactive oxygen species (ROS) production.** Intracellular production of ROS was evaluated with the fluorescent probe 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA, Fluka). A stock solution of probe (10 mM) was prepared in dimethyl sulphoxide (DMSO; Sigma) and stored in the dark at −80 °C until use. The flagellates obtained from cultures were centrifuged at 200 x g for 5 min and then resuspended in MDM (5 × 10^6 cells/ml). For the assay, 100 μL of the flagellate solution were added to each well of 96-well flat-bottom microtitre plates along with 1 μL of a 1:10 dilution (in DPBS) of stock solution of the probe in DMSO (final concentration of DMSO: 10 μM). To determine the effect of RESV and MDZ on intracellular ROS production, 1 μL of different dilutions of the drugs being tested was
also added to provide the final concentrations used (0, 25, 50 and 100 μM for RESV and 0, 3.125, 6.25 and 12.5 μM for MDZ). The plates were then incubated for 1 h at 37 °C.

Fluorescence was measured in a microplate fluorescence reader (excitation/emission = 490/525 nm). In all experiments, the fluorescence produced by spontaneous oxidation of the probe was subtracted from the fluorescence values obtained for the experimental samples.

**Real-time reverse transcriptase polymerase chain reaction (RT-qPCR).**

Total RNA from *T. vaginalis* trophozoites (10^7 cells/sample) was isolated with a NucleoSpin® RNA kit (Macherey-Nagel, Düren, Germany), in accordance with the manufacturer's instructions. The resulting RNA was dried and dissolved in diethylpyrocarbonate (DEPC)-treated RNase-free water at a concentration of 1 μg/ml.

cDNA synthesis (25 μl/reaction) was achieved with 1.25 μM random hexamer primers (Roche), 250 μM of each deoxyribonucleotide triphosphate (dNTP), 10 mM DTT, 20 U of RNase inhibitor, 2.5 mM MgCl₂, 200 U of MMLV (murine leukaemia virus) reverse transcriptase (Promega) in 30 mM Tris and 20 mM KCl, pH 8.3, and 2 μg of sample RNA.

PCR was performed with gene-specific primers: pyruvate ferredoxin oxidoreductase D (pfoD) gene (forward/reverse primer pair, 5′-TCTCCGTCTTGATCCTCC-3′/5′-TGTTGTCAGAACACCCCTG-3′, GenBank of NCBI accession number HQ657201) and the *T. vaginalis* [Fe]-hydrogenase A (TvHydA) gene (forward/reverse primer pair, 5′-ATTATGCCATGACACGAAA-3′/5′-ACACCAGTTGACACAAA-3′, GenBank of NCBI accession number U19897). A parallel PCR with primers for β-tubulin (tub2) gene (forward/reverse primer pair, 5′-TACTCCATCGTCCATCTCC-3′/5′-CCGGACATAACCATGGAAAC-3′, GenBank NCBI accession number L05469) was
used as a reference gene for RT-qPCR. Primer sets were designed and optimized using the Primer 3Plus program (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) based on the default parameters. PCR reactions (20 μL) contained 10 μL Maxima SYBR Green qPCR Master Mix (Thermo Scientific), the primer pair at 300 nM, 1 μL of cDNA, and RNAase-DNAase free water. PCR reactions were subjected to 95°C for 5 min, followed by 40 cycles at 95°C for 10 s and 60°C for 30 s. This was followed by melting curve analysis at 95°C for 15 s, 55°C for 15 s and 95°C for 15 s. The specificity and size of PCR products for each gene were confirmed by gel electrophoresis. All PCRs were performed in an Eco™ Real-Time PCR System (Illumina). Relative quantification of gene expression was determined by the 2^-ΔΔCq method (29) by using software conforming to MIQE (Minimum Information for Publication of Quantitative Real-Time PCR experiments) guidelines (30).

**SDS-PAGE and Immunoblot analysis.** Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on a 12.5% linear gel (31, 32). The CEs samples were reduced and denatured by incubation for 5 min at 100 °C with 62 mM Tris-HCl buffer, pH 6.8, containing 2% SDS, 10% glycerol and 0.02 M dithiothreitol (DTT). Electrophoresis was performed in a mini-vertical electrophoresis system (Hoefer, USA) for 45 min at a constant 200 V in electrode buffer containing 25 mM Tris, 190 mM glycine and 1% SDS (pH 8.3). Western blot analysis was performed as previously described, with minor modifications (33). Following electrophoresis, reduced CEs were immunoblotted at 15 V for 35 min to Immobilon-P transfer membranes (0.45 μm; Millipore, USA) in a trans-blot SD transfer cell (Bio-Rad, USA) with the electrode buffer containing 48 mM Tris, 29 mM glycine, 0.037% SDS and 20% methanol, pH 9.2. Membranes were washed with Tris buffer saline (TBS; 50 mM Tris, 0.15 M NaCl, pH 7.4), stained with Ponceau S (to verify
protein transfer), transfer-blocked for 2 h at room temperature with TBS containing
0.2% Tween 20 and 5% non-fat dry milk, washed in TBS, incubated for 1 h with a
1:500 dilution of rabbit polyclonal antibody raised against highly conserved sequence in
amino acids 342-641 mapping at the C-terminus of heat shock protein (Hsp) 70 of
human origin (Santa Cruz Biotechnology, USA) and finally incubated for 1 h with
horseradish peroxidase (HRP)-conjugated goat anti-rabbit Ig (Dakopatts; dilution
1:2000). Immunodetection of Hsp70 proteins was carried out with an enhanced luminol-
based chemiluminescent substrate for detecting HRP (ECL Western blotting substrate,
Thermo Scientific, USA), following the manufacturer's instructions. Digital images
were obtained after exposing the membrane to a chemiluminiscent imaging system
(Florida FC2, USA) equipped with automatic image capture software. Finally, the
bands in the digitized images were quantified by densitometry analysis (ImageMaster
Total Lab, ver. 2.00; Amersham-Pharmacia-Biotech).

Data presentation and statistical analysis. The results are expressed as
means ± standard error of the mean (S.E.M.). The data were examined by one-way
analysis of variance (ANOVA) followed by Tukey–Kramer test for multiple
comparisons, and differences were considered significant at \( \alpha = 0.05 \). The concentration
of drugs that caused 50% inhibition of the response (IC\(_{50}\)) was estimated by nonlinear
regression analysis (GraphPad Prism software, San Diego, CA, U.S.A.) from the
concentration–response curves obtained in each case (34).

RESULTS

Effect of RESV on in vitro growth of T. vaginalis. The effects of RESV (0, 25, 50 and
100 μM) and MDZ (0, 6.25-100 μM) on the in vitro growth kinetics of T. vaginalis
trophozoites were compared (Fig. 1). At all concentrations tested, RESV caused a
significant decrease in the *in vitro* growth, which was detected on day 1 of culture. However, while the concentrations of 50 and 100 μM significantly decreased the number of trophozoites (relative to the control) and appeared to be cytotoxic, the lowest concentration of RESV used (25 μM) significantly inhibited cell growth, indicating a cytostatic activity (Fig. 1A). The kinetics of antiparasitic activity of MDZ against *T. vaginalis* was very similar to that of RESV, although the former appeared to be slightly more toxic. At concentrations above 6.25 μM, MDZ produced a decrease in the number of parasites in culture from 24h, thus displaying cytocidal activity; at the lowest concentration tested, the drug produced cytostatic activity (Fig. 1B). The mean inhibition values (IC₅₀) obtained for the RESV were 32 μM on day 1 and 25 μM on day 2, and the mean IC₅₀ values for MDZ were 3.2 μM on day 1 and 4.25 μM on day 2 of culture.

**Effect of RESV on Tvhyd activity.** The specific activity of Tvhyd was quantified by spectrophotometric assay, and the effect of RESV (25 and 50 μM) on the enzyme activity was determined. The effect of MDZ (3.125 and 6.25 μM) on Tvhyd activity was also determined. At the concentrations tested, both RESV and MDZ produced a significant dose-dependent decrease in Tvhyd activity, with a mean IC₅₀ of 35.6 and 3.2 μM, respectively (Fig. 2A, B).

In a parallel experiment, the effect of RESV and MDZ (100 and 12.5 μM, respectively) on the Tvhyd activity was also tested qualitatively, on native SDS-PAGE (Fig. 2C). The bands indicating Tvhyd activity were detected when the CEs were applied to SDS-PAGE and the resulting gels were stained with MV. Native SDS-PAGE revealed the presence of a single band of 120 kD, which was stained when CEs of untreated trophozoites were incubated anaerobically with MV and H₂ gas. However, the
band disappeared when the gels containing the CEs were incubated in the presence of 12.5 μM MDZ or 100 μM RESV (Fig. 2C).

**Effect of RESV and MDZ on energetic state of the hydrogenosome.** The effect of RESV and MDZ on the energetic state of the hydrogenosome of *T. vaginalis* was analyzed using cell-permeant MitoTracker® Deep Red probes. The *T. vaginalis* trophozoites incubated with the probe were fluorescent, often showing intracytoplasmic fluorescent granules of shape and size compatible with hydrogenosomes (Fig. 3B).

Fluorescence levels of trophozoites incubated with MitoTracker® Deep Red FM probe were quantified by fluorometry. Both trophozoites incubated with RESV (50 and 100 μM) or MDZ (5.12 to 6.25 μM) exhibited significantly higher, dose dependent fluorescence than untreated controls (Fig. 3A).

**Effect of RESV and MDZ on ROS production and on the ∆ψm of hydrogenosome.** The *T. vaginalis* trophozoites were initially incubated under microaerobic conditions and the intracellular ROS production was determined using the fluorescent probe carboxy-DCFDA, in a fluorometric assay. Addition of RESV (25, 50 and 100 μM) or MDZ (3.125, 5.12 and 6.25 μM) did not significantly affect intracellular ROS production (Fig. 4A). In a second experiment, the JC-1 fluorescent probe was used to analyze the effect of RESV on the ∆ψm in treated and untreated *T. vaginalis* trophozoites after incubation for 2 h with the drugs in MDM medium. In this case, there was a significant dose-dependent decrease in the ∆ψm in the trophozoites incubated for 2 h with MDZ or RESV (Fig. 4B).

**Influence of RESV on hydrogenosome enzyme gene expression.** The effect of RESV and MDZ on the expression of two keys genes within the hydrogenosome metabolism of *T. vaginalis* was evaluated: the TvHydA gene and the gene encoding the enzyme PFO responsible for pyruvate oxidation (pfoD gene). Although RESV (100
μM) did not affect TvhyaD gene expression, MDZ (3.125 and 6.25 μM) had a significant dose-dependent effect on expression of this gene (Fig. 5). However, treatment with RESV (100 μM) increased pfoD gene expression, and MDZ (3.125 and 6.25 μM) also significantly increased the levels of expression of this gene (Fig. 5).

Effect of RESV on Hsp70 expression. Finally, the effect of RESV and MDZ on Hsp70 protein expression in T. vaginalis trophozoites was analyzed by western blotting. The results indicate a dose dependent increase in the protein expression of these chaperones in the trophozoites of T. vaginalis treated with RESV (50-100 μM) or MDZ (3.125 and 6.25 μM) (Fig. 6).

DISCUSSION

The 5-nitroimidazole drugs, of which MDZ is the most commonly prescribed, are the only effective drugs approved for treatment of trichomoniasis (6, 35). MDZ is considered to be cost-effective because it is inexpensive; generally efficient in eliminating T. vaginalis infection, has favourable pharmacokinetic and pharmacodynamics properties, and exerts minor adverse effects (8). Resistance to MDZ is frequently reported and cross-resistance among the family of 5-nitroimidazole drugs is common, leaving no alternative treatments, so that some cases remain unresolved (35). Alternative treatments for trichomoniasis are also needed for individuals who are allergic to MDZ (36, 37). The reliance on a single class of antimicrobial drugs for treating T. vaginalis infections may also increase the emergence of resistance, and studies of the novel therapeutics options for treatment and prevention of refractory trichomoniasis are therefore essential (5). This study demonstrates that in vitro treatment with RESV significantly inhibits growth of T. vaginalis and displays a very similar kinetic antiparasitic activity to that produced by the reference drug MDZ,
although with slightly lower toxicity to the parasite. Mechanistic studies in cells in vitro have almost invariably used concentrations of RESV in the range $10^{-5}$ to $10^{-4}$ M to establish the therapeutic efficacy of this compound (38). Some studies have analyzed the in vitro antitrichomonal activity of some natural extracts from medicinal plants displayed good antitrichomonal activity, with IC$_{50}$ values ranging between 5.6 and 8.0 μg/ml (39-43). These values are similar to those obtained for RESV in this study, but much higher than those obtained with MDZ, the antiprotozoal drug used as positive control, which in the present study yielded a slightly higher value than in other studies (44).

The hydrogenosome, which is a spherical or slightly elongated structure of diameter 0.5-1.0 μm, is usually associated with cytoskeletal structures as the axostyle and costa in trichomonads (45). This unusual organelle, which is found in *T. vaginalis*, is an anaerobic form of mitochondrion (46-47) and produces H$_2$ during ATP synthesis (46). In *T. vaginalis*, fermentative energy metabolism relies on the highly oxygen-sensitive enzymes pyruvate-ferredoxin oxidoreductase (PFO), which is an iron-sulphur protein that converts pyruvate to acetyl-CoA (48), and Tvhyd (49). Hydrogenases (cytochrome c$_3$ oxidoreductase, EC 1.18.99.1) are classified, on the basis of the metal content of their dinuclear catalytic centres, as [NiFe], [Fe] or [NiFeSe] hydrogenases (50). There is evidence that Tvhyd belongs to the [Fe]-hydrogenases, which serves as terminal electron acceptors, evolving molecular hydrogen (51, 52). The present results demonstrate that both MDZ and RESV cause dose dependent inhibition of H$_2$ production by *T. vaginalis* hydrogenosome, as determined by measurement of specific activity by photochemically reduced MV.

Two closely related Tvhyd genes, TvhydA and TvhydB, have previously been characterized from *T. vaginalis*, and one of these contains a 50-kDa protein (53). Other
authors subsequently isolated a gene encoding a putative 64 kDa-like [Fe]-hydrogenase from *T. vaginalis* (54). We analyzed the presence *Tvhyd* in CEs by SDS-PAGE under native conditions, and we found a single protein band of about 120 kDa. Most of the *Tvhyd* characterized so far consisted of at least two subunits (55), which may indicate that the *Tvhyd* has a dimeric structure, which is consistent with the sizes predicted by genetic analysis (54). As in the spectrophotometric assay, native SDS-PAGE shows that both MDZ and RESV inhibit hydrogenase activity. Most studies establish that the antiparasitic mechanism of MDZ is related to the generation of cytotoxic anion radicals (nitro radicals), which bind transiently to DNA, disrupt the DNA and cause cell death (4, 25). It has been established that the electrons required for MDZ activation are released from pyruvate and malate by the activity of PFO enzyme and are transferred to the drug by a low-redox-potential carrier, ferredoxin (Fd), which is reduced to its cytotoxic nitro radical anion (25). In the hydrogenosome, electrons released in the PFO reaction are accepted by Fd, which is subsequently reoxidized by *Tvhyd* and, in this reaction, electrons are coupled to protons to form H₂ (56). MDZ acts as an electron sink in *T. vaginalis* by capturing the electrons generated by PFO, which are then transported by Fe [2Fe-2S] to the drug and not to their natural acceptor, *Tvhyd*. MDZ thus effectively competes for electrons with the *Tvhyd* and consequently, activation of the drug is reflected by reduced H₂ production by hydrogenosomes (57). Several mechanisms are potentially responsible for the RESV-induced inhibition of H₂ production in hydrogenosomes: 1) competition with *Tvhyd* for electrons (like MDZ), 2) inhibition of PFO activity and prevention of the generation of electrons that are transferred to the *Tvhyd*, 3) inhibition of the transport of electrons from the Fd, and 4) direct inhibition of *Tvhyd*. Because RESV and MDZ inhibited H₂ production in the band corresponding to *Tvhyd* in native SDS-PAGE gels, the effects of RESV on H₂...
production must involve competition for electrons generated by PFO or to enzyme inhibition. Although it is known that RESV may act as a radical-scavenging antioxidant via its chemical repair free radicals (56), there is no evidence for any ability to compete for electrons as described for MDZ (58). Therefore, in view of the present results, it could be inferred that RESV acts primarily as an inhibitor of Tvh. It has been suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and Δψm (59). Therefore, it is possible that the inhibitory effect of RESV on Tvh enzyme may involve Fe transport as it has been shown that the RESV blocks Fe transport and can act as an enzyme inhibitor (60).

MitoTracker® Deep Red FM is a far red-fluorescent dye (abs/em ~644/665 nm) that stains mitochondria and hydrogenosomes in live cells and can be used for in vivo determination of the mass and localization of the hydrogenosome in *T. vaginalis* (61, 62). We noted that both RESV and MDZ significantly increased the fluorescence emitted by the parasite hydrogenosomes incubated with MitoTracker® Deep Red FM, suggesting that both compounds induce changes in hydrogenosomal metabolism in *T. vaginalis* trophozoites. This increase in fluorescence may be related to the induction of oxidative stress, a phenomenon that has also been detected in other parasites treated with RESV (63). Thus, our previous studies on parasitic ciliates indicate that treatment with RESV yielded a significant increase in intracellular ROS production and that oxidative damage may preferentially affect the stability and function of enzymes containing iron-sulphur clusters, such as complexes II and III (63-65). However, the present results indicate that either RESV or MDZ did not significantly increased ROS production in *T. vaginalis*. *T. vaginalis* has a microaerophilic lifestyle and uses redox antioxidant systems to counter the detrimental effects of oxygen and express a wide range of genes encoding for defence molecules, including superoxide dismutases,
thioredoxin reductases, peroxiredoxins and rubrerytrins (4), which may eliminate the small amount of ROS produced.

JC-1 is a fluorescent lipophilic and cationic probe that can be used to determine the mitochondrial and hydrogenosomal $\Delta \psi_m$ (28, 66). Use of the JC-1 probe revealed that RESV and MDZ induced a loss of $\Delta \psi_m$, suggesting also that these agents produced a metabolic perturbation of the hydrogenosome. $\Delta \psi_m$ may be altered by deregulation of intracellular ionic charges (e.g. H$^+$), caused by alterations in Tvhyd activity. In ciliate parasites, RESV also generates a collapse and dysfunction of mitochondrial $\Delta \psi_m$ accompanied by a significant increase in intracellular Ca$^{2+}$ levels (65).

Several studies have correlated MDZ resistance with deregulation of hydrogenosomal enzyme gene expression (67). Thus, some studies have shown a significant reduction in the PFO and Tvhyd transcription levels in strains of T. vaginalis that are resistant to MDZ (68). The present results indicate that MDZ has an inductive effect on gene expression of PFO (like RESV), at the highest dose used, and also on the expression of the gene encoding the Tvhyd enzyme in our strain of T. vaginalis. Therefore, the increased expression of both enzymes may be related to the maintenance of homeostasis in the hydrogenosome in parasites treated with both compounds.

The results obtained in the present study suggest that RESV and MDZ caused a high degree of bioenergetic stress in treated parasites. Like mitochondria, hydrogenosomes of T. vaginalis contain heat shock proteins, Hsp70, Hsp60, and Hsp10 (69). The primary function of the chaperone 70 families is to maintain mitochondrial homeostasis and quality control (70). Overexpression of Hsp70 under the treatment may be related to an attempt by the parasite to aid hydrogenosomal survival by protecting against induced damage caused by the drugs.
In conclusion, this study confirms the \textit{in vitro} anti-trichomonal activity of RESV, demonstrating that the antiparasitic mechanism of this polyphenol occurs through induction of hydrogenosomal metabolism alteration. This effect on the trichomonal energy metabolism leads to a profound dysfunction of hydrogenosome, which has deleterious effects on the parasite.

**ACKNOWLEDGEMENTS**

This study was financially supported by grants AGL2010-21219/ACU and AGL2011-29927-C02-01 from the Comisión Interministerial de Ciencia y Tecnología (CICYT; Spain).

**REFERENCES**


27. **Diamond LS.** 1957. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43:488-490.


Frasson AP, dos Santos O, Duarte M, da Silva Trentin D, Giordani RB, da Silva AG, da Silva MV, Tasca T, Macedo AJ. 2012. First report of anti-
Trichomonas vaginalis activity of the medicinal plant Polygala decumbens from the Brazilian semi-arid region, Caatinga. Parasitol Res. **110**:2581-2587.


FIGURE LEGENDS

Figure 1. Effect of resveratrol (RESV), at concentrations of 25, 50 and 100 μM (A), and metronidazole (MDZ), at concentrations of 6.25, 12.5, 25, 50 and 100 μM (B), on the in vitro kinetic of growth of T. vaginalis. Each point on the lines represents the mean ± standard error of the number of trophozoites / mL (n = 5). Asterisks indicate statistically significant differences between treated groups and untreated controls: * P < 0.01.

Figure 2. Tvhyd activity in cell extracts (CEs) from T. vaginalis strain Tv1: the Tvhyd activity was measured by monitoring the oxidation of reduced methyl viologen (MV) in CEs from T. vaginalis treated with resveratrol (RESV) at 25 and 50 μM (A) and metronidazole (MDZ) at 3.125 and 6.25 μM (B). Histogram bars show mean ± standard error (n= 5). Asterisks indicate statistically significant differences between the treated groups and the untreated controls: *P < 0.05; **P < 0.01; ***P < 0.001. C) Tvhyd-activity in native stained gel after sodium dodecyl sulphate polyacrylamide electrophoresis (PAGE) of T. vaginalis CE. Lanes containing CE were incubated in presence of 12.5 μM MDZ, 100 μM RESV or without drugs (lane 0). Lane 0 show a stained band of a size of approximately 120 kD (arrow) that disappears in the lanes incubated with both drugs. MW: molecular weight markers in kD.

Figure 3. (A) Effect of resveratrol (RESV) at 50 and 100 μM and metronidazole (MDZ) at 6.25 and 12.5 μM on energetic state of the T. vaginalis hydrogenosome by using the cell-permeant MitoTracker probe, MitoTracker® Deep Red FM. Results are expressed in arbitrary units of fluorescence and the bars show ± standard error (n= 5). Asterisks indicate statistically significant differences with respect to control (*P < 0.01). B)
Detection of *T. vaginalis* hydrogenosomes by using fluorescence microscopy in cells stained with Mitotracker Red: hydrogenosomes appear intensely stained red (arrows).

**Figure 4.** A) Intracellular reactive oxygen species (ROS) production by *T. vaginalis* trophozoites incubated in presence of resveratrol (RESV) at 25, 50 and 100 μM and metronidazole (MDZ) at 3.125, 6.25 and 12.5 μM. Prooxidant levels were measured using the oxidation sensitive fluorescent probe 5(6)-carboxy-2′,7′-dichlorofluorescein diacetate. B) Effect of RESV at 25, 50 and 100 mM and MDZ at 3.125, 6.25 and 12.5 μM on membrane potential in *T. vaginalis* hydrogenase, quantified by using the lipophilic cationic probe 5,5′,6,6′-tetrachloro-1,1′3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1); the results are expressed in arbitrary units of fluorescence. Histogram bars show mean ± standard error (n= 5). Asterisks indicate statistically significant differences between the treated groups and the untreated controls: *P* < 0.05; **P** < 0.01.

**Figure 5.** Expression level of ferredoxin oxidorreductase (PfoD) and hydrogenase (*TvhydA*) genes after exposure to resveratrol (RESV, 50-100 μM) and metronidazole (MDZ, 3.125-6.25 μM), measured by retrotranscriptase-real time PCR (RT-qPCR) using β-tubulin (*btub2*) gene as reference for gene expression normalization. Analysis of relative gene expression was on by the 2 ^−ΔΔCq^ method and each vertical bar represent the mean ± standard error. Asterisks indicate statistically significant differences between the treated groups and the untreated controls: *P* < 0.05; **P** < 0.01.

**Figure 6.** A) Western-blot analysis of cell lysates (CEs) of *T. vaginalis* incubated with anti-heat shock protein (Hsp) 70 antibodies. *T. vaginalis* trophozoites were incubated in
the presence of resveratrol (RESV), at 50 and 100 μM, and metronidazole (MDZ), at 3.125 and 6.25 μM; (-) control without the addition of anti-Hsp70 antibody. B) Densitometric analysis of the immunostained CEs from A (see Materials and Methods for description of bands quantification).