Rapid emergence of resistance to linezolid and mutator phenotype in *Staphylococcus aureus* isolated from a cystic fibrosis adult patient.

Asmaa TAZI*1,2,3*, Jeanne CHAPRON1,2,5, Gerald TOUAK2,4, Magalie LONGO1,3, Dominique HUBERT1,2,5, Gislène COLLOBERT2, Daniel DUSSER1,2,5, Claire POYART1,2,3,4 and Philippe C. MORAND #1,2,3.

1 - Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
2 - Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Paris, France
3 - INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
4 - Centre National de Référence des Streptocoques, Paris, France
5 - Centre de Ressources et de Compétences de la Mucoviscidose Adulte, Hôpital Cochin, Paris, France.

Running title: Rapid emergence of resistance to linezolid.

Corresponding author: Philippe C. Morand
Service de Bactériologie
Hôpital Cochin, AP-HP, Université Paris Descartes
27 rue du faubourg Saint-Jacques
75014 Paris, France
E-mail: philippe.morand@cch.aphp.fr

* Present address: Unité de pathogénie microbienne moléculaire, INSERM U786, Institut Pasteur, Paris, France.
Abstract

Linezolid has emerged as an important therapeutic option for the treatment of *Staphylococcus aureus* in patients with cystic fibrosis. We report the rapid emergence, upon treatment with linezolid, of linezolid-resistant *S. aureus* clinical isolates through the accumulation of 23S rRNA resistance-associated mutations, together with acquisition of an altered mutator phenotype.
34 \textit{Staphylococcus aureus} (Sa) is a major pathogenic microorganism in the respiratory tract of paediatric and adult patients with cystic fibrosis (CF). In 2011, 25.9% of CF patients in the USA were infected with methicillin-resistant Sa (MRSA) \cite{1}. In this rising trend, linezolid (LZD) has emerged as a therapeutic option for the treatment of MRSA in CF. LZD is effective through inhibition of protein synthesis after binding to the domain V of the 23S ribosomal RNA (rRNA) \cite{2}. A few LZD-resistant Sa (LRSA) clinical isolates have been reported since 2001 \cite{3}, both in CF and non-CF patients \cite{4}. Mutations in the 23S rRNA subunit were mostly incriminated, involving at least one of the five-to-six chromosomal copies of the 23S rRNA gene \cite{3, 5}. Alterations in ribosomal proteins L3 or L4 of the peptidyltransferase centre were also reported \cite{6}, as well as plasmid-mediated ribosomal methyltransferase \textit{cfr} gene \cite{7}. Here we report the rapid emergence of resistance to LZD in MRSA in the course of LZD treatment in an adult CF patient.

A 24-year old woman, homozygous \textit{ΔF508}, had been diagnosed with CF at the age of 14 months and had been presenting chronic bronchial colonization with MRSA and \textit{Pseudomonas aeruginosa} since the age of 10. She had been treated with inhaled antibiotics (tobramycin and colistin), azithromycin, two intravenous antibiotic courses per year and oral antibiotics (60-180 days per year). Her pulmonary function was stable with a forced expiratory volume in one second at 75 % of the predicted value.

The poor clinical response to fusidic acid and minocycline treatment in an episode of pulmonary exacerbation led to the initial administration of LZD (600 mg p.o. twice daily, 14 days) (Figure 1). LZD was readministered five months later, as an alternative to monthly 14-day course of fusidic acid or minocycline. Two months after the second administration of LZD, routine sputum microbiological monitoring showed...
LZD-resistant MRSA (isolate Sa-E in Figure 1, MIC=16 μg/mL), using the disk diffusion method and confirmed by E-test (CLSI and EUCAST recommendations, breakpoint 4.0 μg/mL). All MRSA isolates obtained before the second administration of LZD (Sa-A to Sa-D) were LZD-susceptible. The MRSA isolates obtained after Sa-E were susceptible to LZD, except for Sa-G that was obtained 3 months after Sa-E. LZD treatment was reintroduced two years after discontinuation, having been replaced by one IV course of vancomycin and 3 annual courses of minocycline in the meantime, with good clinical outcome. No LRSA has been isolated since LZD was reintroduced, and no other patient attending the clinic was infected by LRSA. Taken together, the emergence of LRSA had limited clinical impact.

All isolates (Sa-A to Sa-G) were not distinguishable from each other in pulsed-field gel electrophoresis analysis (8), suggesting that they were phylogenetically related. No cfr-associated resistance was detected and all chromosomal copies of the 23S rRNA gene were sequenced (5). Among the five copies of the 23S rRNA gene, a G2234A mutation was identified on 1 copy in Sa-A, Sa-B, Sa-C, Sa-F and Sa-G, and on 2 copies in Sa-D and Sa-E. A G2576T mutation was identified on 1 copy in Sa-F, 2 copies in Sa-D, 3 copies in Sa-G and 4 copies in Sa-E. One copy of a G2621A mutation was also found in Sa-G. Attempts to obtain LZD-resistant clones in vitro from LZD-susceptible isolates through daily iterative exposure to sub-MIC LZD concentration (9), for up to 20 days, remained unsuccessful. However, two isolates showing LZD-susceptible or -resistant phenotypes (Sa-C and Sa-E, respectively) were investigated for their mutator phenotype by measuring the emergence rate of resistance to streptomycin (10). Whereas no peculiar mutator phenotype was observed for the LZD-susceptible Sa-C isolate, compared to Sa ATCC25923 used as control (mutation frequency 1.6x10⁻⁶ vs 2.3x10⁻⁶, respectively, p=0.03, Student test), the LZD-
resistant Sa-E isolate showed an increased \((8.2 \times 10^{-5}) \), though moderately, mutation rate compared to Sa-C (ca. 50-fold, \(p=0.0002 \)) and to the control (ca. 35-fold, \(p=0.0002 \)).

Genotypical results supported these data since identical non-previously described (P636R, F658S, T689P) and one previously reported (Q868H) MutS mutations \((10) \) were found in Sa-D to Sa-G, whereas no MutS mutation was observed in Sa-A to Sa-C, compared to reference (AAW38145.1). All isolates displayed identical mutations in MutL (H347Y, P379S, E382A, A409T, D445E, G446D, T447A and T448S), compared to reference (AAW38146.1, ZP06924488.1).

These data highlight the rapidness with which resistance-associated mutations can arise in MRSA upon LZD treatment since only 14 days were sufficient for the emergence of a G2576T mutation in the 23S rRNA gene, and 28 days of total therapy for the emergence of LRSA. The rapid emergence of resistance described in this case is in contrast with previous reports that strengthened the impact of long-lasting use of LZD in CF patients on the selection of LRSA \((11, 12) \).

The G2576T mutation in the 23S rRNA gene, observed in isolates Sa-D to Sa-G, was previously reported to mediate resistance to LZD \((3) \), with MICs increasing together with the number of mutated copies \((9, 13) \). Neither G2234A nor G2621A mutations were reported so far. G2234A was pre-existing to the administration of LZD and its role in decreased susceptibility to LZD is therefore unlikely. The G2621A mutation was observed in Sa-G as a single copy, in association with three copies of the G2576T mutation, thus rendering difficult the assessment of its direct role in resistance to LZD.

The hypermutator phenotype was not associated so far with the emergence of LRSA in CF but the altered mutator phenotype observed for Sa-E, compared to Sa-C, is consistent with the previously reported high rate of mutable strains in CF patients \((10, \)
Although one cannot exclude that, in this case, other mechanisms be also involved in the emergence of the resistance phenotype (15), it is striking that mutator phenotype and genotype have evolved concomitantly with the increasing number of mutations in 23S RNA, MutS sequences being different for isolates Sa-A to Sa-C and Sa-D to Sa-G. The use of iterative exposure to LZD subinhibitory concentrations did not allow us to obtain *in vitro* LZD-resistant Sa mutants. Difficulty to obtain LZD-resistant clones was also reported in a different setting using genetically-engineered hypermutable Sa strains in an *in vitro* pharmacokinetic-pharmacodynamic model (16). These *in vitro* observations are in contrast with the rapid emergence of resistance that was observed in this patient. Conditions for the emergence of resistance to LZD in CF patients thus probably involve additional factors such as pharmacokinetics. Despite similar LZD levels in sputum and serum (17), the bioavailability of LZD was reported to be reduced in CF patients (18), and a twice daily 600mg regimen was suggested to be insufficient to reach the target pharmacodynamic exposure for stains presenting with MICs above the 1-2μg/mL range (18, 19). In this report, the isolates preceeding the emergence of LZD-resistance did not show MICs exceeding 2.0μg/mL, but wide inter-individual pharmacodynamic variations have been reported (17) and further work is needed in this population to evaluate the benefit in resistance prevention and the potential adverse effects associated with the administration of a third daily dose (20).

Finally, the persistence of strains harbouring 23S rRNA gene mutations, as for Sa-D after 5 months without LZD antibiotic pressure, is in contrast with the reduced bacterial fitness of hypermutable Sa that was reported in a model of chronic bone infection (21). This persistence rather supports the controversial hypothesis stemming from *in vitro* experiments that LZD resistance-associated mutations would have a minimal impact on the fitness of Sa (5, 9), and that mutations in the 23S RNA
gene may arise in the absence of exposure to LZD (22). The chronology for the isolation of strains Sa-E to Sa-G shows an alternation of LZD-susceptible or resistant isolates, as well as different patterns for the mutated copies of the 23S RNA gene. One cannot formally exclude that Sa-G be a derivative of Sa-E through successive reversions of G2576T (23) and G2234A mutations, and with acquisition of the G2621A mutation. Alternatively, we favour the hypothesis that several isogenic mutants with different fitness behaviour have emerged upon LZD treatment, and that some isolates that appear predominant at different time-points are successively isolated in routine sputum analysis.

In conclusion, this case illustrates a rapid in vivo selection of LRSA upon treatment with LZD and highlights the need for efficient and reliable monitoring of susceptibility to LZD in MRSA strains isolated from CF patients.
References

Figure 1. Characteristics of the MRSA strains isolated over the period of treatment with LZD. LZD MICs were determined by E-test, a thick dotted line showing the 4μg/mL cut-off value. Mutations in the domain V of the 23S rRNA are indicated for each MRSA isolate (Sa-A to Sa-G), together with the relative number of mutated copies (brackets). MutS and MutL genotypes are indicated for all isolates. LZD total therapy from first use to isolation of LRSA was 28 days.